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Understand Users’ Comprehension and Preferences for Composing
Information Visualizations

HUAHAI YANG, YUNYAO LI, and MICHELLE X. ZHOU, IBM Research–Almaden

We are developing an automated visualization system that helps users combine two or more existing infor-
mation graphics to form an integrated view. To establish empirical foundations for building such a system,
we designed and conducted two studies on Amazon Mechanical Turk to understand users’ comprehension
and preferences of composite visualization under different conditions (e.g., data and tasks). In Study 1,
we collected more than 1,500 textual descriptions capturing about 500 participants’ insights of given in-
formation graphics, which resulted in a task-oriented taxonomy of visual insights. In Study 2, we asked
240 participants to rank composite visualizations by their suitability for acquiring a given visual insight
identified in Study 1, which resulted in ranked user preferences of visual compositions for acquiring each
type of insight. In this article, we report the details of our two studies and discuss the broader implications
of our crowdsourced research methodology and results to HCI-driven visualization research.
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1. INTRODUCTION

The use of information visualization for data illustration and analysis used to be a priv-
ilege of dedicated scientists and professional data analysts. With the ever-increasing
easy access to data and democratization of visualization tools (e.g., ManyEyes [Viegas
et al. 2007] and GapMinder [Rosling 2009]), people are now able to use information
graphics [Bertin 1983; Tufte and Howard 1983] in many aspects of their daily lives,
such as examining airfare trends and comparing car insurance quotes. Not only do
people use information visualization to explore various data aspects [Heer et al. 2007],
but they also often want to integrate their stepwise analyses to obtain an overall picture
or derive deeper insights [Collins and Carpendale 2007; Dörk et al. 2008; Thomas and
Cook 2005].

Consider a person who is studying how various factors impact one’s overweight
ratio. To do so, this person first examines the impact of one’s weekly exercise frequency
(Figure 1(a)) and then the impact of gender (Figure 1(b)). To understand how multiple
factors, in this case, one’s exercise frequency and gender together, affect the overweight
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Fig. 1. Two simple information graphics and one of their possible compositions.

Fig. 2. Another two simple information graphics and one of their possible compositions.

ratio, the person wants to fuse together the two individual displays into a composite
one (e.g., Figure 1(c)).

The need for composing multiple information visualizations exists not only during
an individual’s analytic process but also during a collaborative visual analytic process
[Danis et al. 2008; Heer et al. 2007]. Such a process often requires the fusion of multiple
graphics created by different individuals to reach an integrated point of view. Consider
a couple evaluating a set of used cars using information graphics. One of their main
concerns is the potential insurance cost. Thus, they are examining the claim cost for
various used vehicles. Whereas the husband is comparing the claim cost for vehicles
of different ages (Figure 2(a)), the wife is examining the claim cost for different types
of vehicles (Figure 2(b)). To make a decision together, they would like to combine
their separately created information graphics into one that can provide them with an
integrated view of their respective analyses (e.g., Figure 2(c)).

Composing multiple information graphics together, even simple ones, is nontrivial
for two main reasons. First, a new information visualization must be created to en-
code all variables in each existing display. For the examples shown, the combined
graphic in Figure 1(c) must now encode three variables—overweight ratio, gender, and
weekly exercise frequency. Likewise, the composition in Figure 2(c) also must encode
three variables—mean claim cost, vehicle type, and vehicle age. The increased number
of variables then requires more effort in designing an effective information graphic
[Cleveland and McGill 1985; Mackinlay 1986]. Second, individual visualizations often
could be combined in multiple ways. For example, in addition to Figure 2(c), Figure 3
shows four more ways to combine the two original displays. Furthermore, the suit-
ability of a particular composition may be decided by a number of factors, including
characteristics of data and existing visual displays, user tasks, and preferences. Given
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Fig. 3. Four sample composite visualizations.

these challenges, combining multiple existing information graphics is often a daunting
task for visualization experts, let alone for novice users.

To address these challenges, we are developing an intelligent visual composition
system that helps users easily compose multiple information visualizations on the
fly, customized to their tasks and preferences. To guide our development effort, our
first step is to acquire a thorough understanding of users’ comprehension of composed
information graphics and their preferences for such graphics under different conditions
(e.g., data properties and tasks). Such studies directly help validate our two hypotheses,
on which our automated visual composition system is based:

(1) People can obtain certain visual insights from composite graphics that are unob-
tainable from simple ones, and

(2) People prefer certain type(s) of compositions over others for acquiring a particular
type of insight.1

Since we are unaware of any existing work satisfying our needs, we have designed and
conducted our own study. Our current study focuses on investigating the composition
of relational graphics [Tufte and Howard 1983], in particular, bar and line graphs, the
two most commonly used business information graphics [Kosslyn 1989]. Corresponding
to the two hypotheses presented, the goal of our study is to answer two sets of research
questions:

(1) How do people comprehend simple and composite information graphics to derive
insights?
(a) What kind of visual insights does a user derive from a simple/composite infor-

mation graphic? How do the derived insights statistically distribute?
(b) How good are the user-derived visual insights?
(c) How easy is it for a user to derive insights?
(d) How useful is the presented graphic for obtaining the intended insights?

(2) What is the preferred order among the different compositions for people to acquire
a given type of visual insight?

We designed and conducted two studies. The first study (Study 1) was to address
the first set of questions. In this study, we designed and conducted a set of surveys on
Amazon Mechanical Turk to assess people’s comprehension of a given set of information
graphics. In these surveys, participants expressed their understanding of the given
visualization in free text. We then coded and analyzed the participants’ descriptive
input to uncover the underlying conceptual structures. From the content analysis,
we derived a taxonomy of visual insights, which classifies the conceptual structures

1In the rest of the article, we equate acquiring a visual insight to achieving a visual task. We will use the
two terms interchangeably.
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induced by the given visualization. We then studied the distributional properties of
these insights across the information graphics. The second study (Study 2) was to
answer the second set of questions. We asked a set of participants to rank different
composite visualizations in terms of their suitability for acquiring a given visual insight
identified in Study 1.

The rest of the article is organized as follows: We first briefly discuss related work
in Section 2 before introducing the types of information graphics used in our study in
Section 3. We then present our first study in Section 4, followed by the second study in
Section 5, including their methods, results, and analysis. We discuss the implications
and limitations of our work in Section 6 and Section 7, respectively.

2. RELATED WORK

Our work is closely related to several research areas in HCI, information visualization,
and cognitive semantics.

2.1. Automatic Generation of Visualization

Our work is directly related to research efforts on automated generation of visualiza-
tion. Researchers have developed a number of approaches and systems in this area.
For example, Mackinlay [1986] uses both expressiveness and effectiveness to guide the
generation of an information graphic. More recently, Mackinlay et al. [2007] present
an automated graphics system for commercial use, focusing on the user experience of
such a system [Mackinlay et al. 2007]. In contrast, Casner [1991] uses a user’s per-
ceptual tasks to guide the design of information graphics [Casner 1991]. Roth et al.
[1997] have extended the previous efforts and used both data characteristics and user
tasks to guide the automatic creation of interactive information graphics [Roth et al.
1997]. To improve the extensibility of automated visualization systems, Zhou and Chen
[2003] have explored automated generation of information graphics by examples [Zhou
and Chen 2003]. To improve the generation quality of information graphics, researchers
have also developed various algorithms and methods, including optimization-based ap-
proaches to dynamic generation of follow-up displays [Wen et al. 2005] and automated
data transformation [Wen and Zhou 2008b], and different approaches to handle visual
transitions between two different displays [Gotz and Wen 2009; Heer and Robertson
2008].

Similar to these efforts, we also aim at the automated creation of an information
graphic tailored to a user’s preferences and tasks. However, unlike previous efforts
that either focus on generating an information graphic from scratch [Mackinlay 1986;
Casner 1991; Mackinlay et al. 2007; Roth et al. 1997; Zhou and Chen 2003] or from
one existing display [Wen et al. 2005; Gotz and Wen 2009; Heer and Robertson 2008],
ours is on creating a new information graphic by automatically combining two or more
existing ones. While learning from those previous works, we also systematically inves-
tigate users’ comprehension and preferences of information graphics for the purpose of
creating suitable visual compositions.

2.2. Empirical Studies on Visualization and Graphic Comprehension

To understand various aspects of visualization design and their impact on users, re-
searchers have conducted many empirical studies. These studies include understand-
ing low-level analysis tasks for given datasets [Amar et al. 2005], examining specific
visualization techniques (e.g., Chen and Czerwinski [2000] and Stasko et al. [2000]),
evaluating the quality of visualization [North 2006], studying the impact of visual-
ization quality on users [Wen and Zhou 2008a], assessing visualization design from
various aspects [Heer and Bostock 2010; Heer et al. 2009], and exploring the language
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used in describing visualizations [Metoyer et al. 2012]. Similar to these studies, ours is
also on the understanding and analysis of users’ visual perceptual behavior. However,
our work specifically focuses on examining users’ comprehension and preferences of
compositions of multiple existing graphics.

Directly related to our work, there is a rich body of research on understanding peo-
ple’s comprehension of information graphics [Culbertson and Powers 1959; Anscombe
1973; DeSanctis 1984; Kosslyn 1989; Curcio 1989; Friel et al. 2001]. This line of work
considers graphic comprehension to be a logical progression of mental information pro-
cessing [Bertin 1983; Pinker 1990; Carpenter and Shah 1998]. Empirical studies thus
often were aimed at testing hypotheses related to this process [Shah et al. 2005]. For
example, some studies investigated the effect of display format on graph comprehen-
sion [Simkin and Hastie 1986; Shah et al. 1999; Canham and Hegarty 2010; Shah and
Freedman 2011]. However, they do not directly address the design issues of composing
graphics, such as the appropriate graphic compositions for a given type of visual task.
To achieve our goal of creating automated graphics composition systems, we designed
our studies to target a specific set of questions that have not yet been addressed. For
example, what types of insights do people gain from graphics? How do these insights
occur in different graphics? How are the insights related to different types of graphic
compositions?

It is worth noting that researchers have started to employ Amazon Mechanical Turk
to crowdsource visualization studies [Heer and Bostock 2010], which inspired us to
leverage Mechanical Turk for our own. However, unlike the previous study, which
aims at validating the viability of Mechanical Turk as a platform for visual perception
experiments (e.g., studying visual aspects such as chart sizing and gridline spacing),
ours is on studying users’ higher-level semantic comprehension of graphics as a whole.
As described later, we thus must deal with new challenges raised in designing our
crowdsourced studies and analyzing the complex crowdsourced results.

2.3. Taxonomies for Visualization

Researchers have developed various taxonomies for describing various aspects of vi-
sualization (e.g., Chuah and Roth [1996], Kosslyn [1989], Shneiderman [1996], Zhou
and Feiner [1998], and Amar et al. [2005]). Compared to these efforts, our work derives
a task-oriented visual insight taxonomy by analyzing more than 1,500 users’ written
descriptions of information graphics. Moreover, our analysis also reveals the distri-
butional properties of the taxonomy, including the frequency of insight occurrences
across different types of information graphics. Essentially, this empirical crowdsourced
approach to visualization taxonomy is a departure from the usual theory-based taxon-
omy development.

Our method of deriving visual taxonomy is inspired and guided by the approach of
cognitive semantics [Talmy 2000; Croft and Cruse 2004; Evans and Green 2006], where
the conceptual structures in people’s minds are manifested as linguistic meanings.
By collecting and examining a large amount of linguistic data describing a set of
visualizations, we uncover the common conceptual structures induced by visualization
and thus produce a taxonomy of visual insights. In particular, we argue that these visual
insights are specialized image schema [Johnson 1990], which are abstract conceptual
representations arising from our sensory experience of measuring things.

3. INFORMATION GRAPHICS COMPOSITIONS

Before reporting on our studies in details, here we define the general terminology used
in our work and explain the scope of our studies.
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3.1. Terminology

In this article, we work with relational graphic [Tufte and Howard 1983], which encodes
two or more data variables, excluding time series2 and map-based visualizations. We
further controlled the scope of our study to focus on the two most commonly used
relational graphics: bar and line graphs, including their variants (e.g., stacked bars
and side-by-side bars in Mackinlay et al. [2007] and Wilkinson [2005]).

We adopt the terminology from the Grammar of Graphics (GoG) [Wilkinson 2005] to
describe a relational graphic in our study. GoG generalizes or serves as a basis for a
range of frameworks that specify the slicing, dicing, and rendering of a multivariate
dataset [Wilkinson 2012], such as Trellis layout [Becker et al. 1996], product plots
[Wickham and Hofmann 2011], and ggplot2 [Wickham 2009].

According to the grammar, a data variable encoded in a relational graphic belongs
to one of two types. The first type is known as measure or analysis variable, of which
statistics is calculated. The second type is called category variable, which divides the
values of measure into groups.

We consider a bar or line graph a simple graphic if it encodes only two data
variables—one measure variable and one category variable (e.g., Figure 2(a) and (b)).
In contrast, it is a composite graphic if it encodes three or more data variables. A com-
posite graphic (Figure 3) can be composed by combining two or more simple graphics
through data merging and repartitioning.

Three algebraic operators are defined in GoG [Wilkinson 2005] to describe the pos-
sible compositions:

(1) Cross, which “crosses all of the values of one data variable with all of the values of
another variable.” Figures 3(a), 3(b), 1(c), and (2c) are examples of crossed composite
graphics;

(2) Nest, which “nests all of the values of one data variable in all of the values of
another variable” and results in paneled graphics, also known as small multiples
of graphics. Figure 3(c) and (d) provides examples of nested composite graphics;
and

(3) Blend, which “combines all of the values of one variable with all of the values of
another variable.” Such database union like operation does not produce distinct
types of graphics; therefore, the current study does not use this operator.3

In the broader context of combining multiple visualizations, a variety of methods
have been reported in the literature, such as juxtaposition, superimposition, overload-
ing, nesting, and integration [Javed and Elmqvist 2012]. Some of these methods may
leverage the composition operators in GoG, and others may not. In this article, we focus
only on the compositions operators presented earlier in order to control the number of
experimental conditions.

3.2. Scope of Study

To further contain the scope of our study, we considered only the composition of two
simple graphics for the following reasons. First, people often have difficulty in com-
prehending high-dimensional graphics involving three or more data variables [Wen
and Zhou 2008a]. Second, we wanted to avoid unnecessary complications involved in

2Although a few datasets used in our study have time-valued variables, they are not time series data per
se, since these variables just happen to be related to the temporal scale, such as “the highest year of school
completed.”
3It also has relatively limited scope of applicability because two variables can only be sensibly blended if
they are of the same semantic nature (e.g., both represent time). If two variables represent semantically
different dimensions, they cannot be blended (e.g. blending money and time is not meaningful).
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Table I. Ten Experimental Conditions and Composite Graphics Used in Study 1

Single Graphics Crossed Line Nested Line Crossed Bar Stacked Bar Nested Bar
Line : Line Fig. 6(a) Fig. 6(e) — — —
Bar : Bar — — Fig. 6(i) Fig. 6(q) Fig. 6(m)
Line : Bar Fig. 6(c) Fig. 6(g) Fig. 6(k) Fig. 6(s) Fig. 6(o)

designing a composite information graphic. For example, we would have to consider
the ordering of their compositions if we had three or more simple information graphics.
Furthermore, it is desirable to hold the number of variables constant so that we could
isolate the effect of composition operators.

More formally, we have the following: given two simple graphics A = 〈m1, c1〉 and
B = 〈m2, c2〉, where m1, m2 are measure variables and c1, c2 are category variables, the
composition of A and B is denoted as A : B �→ C, where C = 〈m1, m2, c1, c2〉.

If m1 and m2 are two completely different types of variables (e.g., salary and years
of education), it is often difficult to encode them in a conventional bar/line graph or
its common variants (e.g., stacked or aligned graphs).4 Hence, in our experiments, we
considered only composing two simple graphics with the same measure, m1 = m2, so the
composite graphics used in our experiments contained three variables—one measure
variable and two category variables, and the composition operators apply to category
variables.

Since we consider two composition operators (Cross and Nest) and two types of
graphics (bar and line graphs), we now have four types of composite graphics: Crossed
Bar, a common graphic with a set of clustered bars (Figure 3(a)); Nested Bar, a paneled
set of bar graphics (Figure 3(c)); Crossed Line, a multiline graphic (Figure 2(c)); and
Nested Line, a paneled set of line graphics (Figure 3(d)). In addition to these four
compositions, we added the fifth one, Stacked Bar graph (Figure 3(b)), a commonly
used variant of crossed bar composition.

Given that we have three possible pairs of input (Line:Line, Line:Bar, Bar:Bar)
and five types of output composition (Crossed Bar, Nested Bar, Crossed Line, Nested
Line, and Stacked Bar), we could have had a total of 15 cases to test. However, some
of the cases are not desirable in practice—for example, composing two bar graphs into
a line graph, which completely differs from its sources and is likely to disrupt a user’s
visual momentum [Woods 1984]. We thus removed 5 such cases. Table I summarizes
the remaining 10 cases.

4. STUDY 1: UNDERSTANDING INFORMATION GRAPHICS

Study 1 aims at answering our first set of research questions—that is, understanding
how users comprehend information graphics to derive visual insights. To achieve this
goal, we designed and conducted a set of online surveys on Amazon Mechanical Turk.5
It is not the intent of this study to formally compare and contrast the experiment con-
ditions. Instead, the 10 conditions were designed to systematically cover the practical
variations of the studied graphics and their compositions so that we have a better
chance of observing a full range of visual insights within the scope of the study.

4.1. Study Design

The study was a between-subjects design. Each participant was given one of the 10
online surveys, each corresponding to one of the 10 experimental conditions (Table I).

4Researchers have shown how to create unconventional information graphics encoding multiple measure
variables (e.g., Roth and Mattis [1991]). Moreover, we currently focus on composing common bar and line
graphs that can be generated using widely available tools such as Excel or SPSS.
5http://mturk.com.
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Table II. Datasets Used to Generate Graphics

Graphic Dataset Relevant Literature
Fig. 6(i) Obesity [National Center for Health Statistics 2000] [Frank et al. 2004]
Fig. 6(q) Education [National Opinion Research Center 1991] [Gillborn and Mirza 2000]
Fig. 6(a) Education [National Opinion Research Center 1991] [Gillborn and Mirza 2000]
Fig. 6(c) Labor [National Opinion Research Center 1991] [Altonji and Blank 1999]
Fig. 6(e) Family [National Opinion Research Center 1991] [Downey 1995]
Fig. 6(k) Environment [National Opinion Research Center 1993] [Blocker and Eckberg 1997]
Fig. 6(o) Environment [National Opinion Research Center 1993] [Blocker and Eckberg 1997]
Fig. 6(m) Infant Mortality [United Nation 1995] [Fain et al. 1997]
Fig. 6(g) Car Insurance [McCullagh and Nelder 1989] [Lemaire 1985]
Fig. 6(s) Ship Damage [McCullagh and Nelder 1989] [Kitamura et al. 1998]

Measures were taken to ensure that a participant took a survey only once. However, it
was technically difficult to prevent one from participating in multiple surveys. There-
fore, each survey used a different data-topic-variable combination to avoid the potential
learning effects that may negatively impact the diversity of observed visual insights.
Because we did not plan to formally compare the graphic types in this study, a fully fac-
tored design involving different combinations of datasets, data variables, and graphic
types was not attempted in order to make the study manageable.

4.1.1. Datasets. We used several datasets to generate the graphics in the surveys.
Since our ultimate goal is to create a graphic composition system that helps people in
their real-world tasks, we used four criteria to choose the datasets. First, the selected
data should be real instead of synthetic. Second, the selected data should be easily
understandable by people. Third, the selected data should be meaningful—for example,
they provide answers to questions that people care about in the real world. Finally, the
data should be easily obtainable. We selected six sample datasets coming with SPSS,
a popular statistical software (Table II).6 All of the chosen datasets were accompanied
by publications that illustrated the use of the data in real-world analytic tasks. The
publications provided the relevant real-world analytic questions and sometimes even
included corresponding visualizations similar to what we used in the study.

4.1.2. Information Graphics. Per the scope of our study, our goal is to understand how a
user perceives graphics to derive visual insights. To test all 10 composition conditions,
we designed a total of 10 surveys to test participants’ comprehension (Table I). For
each survey, we used the implementation of GoG in SPSS to generate three information
graphics: two simple graphics and one of their compositions. For the sake of consistency,
we customized the graphics so that they had the same physical (418 × 334 pixels) and
font sizes (12 point for dimension labels and 9 point for tick labels). We also applied a
styling theme7 to ensure a uniform look and feel for all graphics.

4.1.3. Participants. We recruited turkers from Amazon Mechanical Turk as our partic-
ipants. Turkers, who perform tasks posted on Amazon Mechanical Turk for a mone-
tary payment, are “relatively representative of the population of US Internet users”
[Ipeirotis 2010; Berinsky et al. 2012] and are shown to be reliable experimental subjects
for perceptual visualization research [Heer and Bostock 2010]. To recruit turkers for
our survey, we posted the task description on Amazon Mechanical Turk, which directed
the turkers to an online survey site built for this study.

6It bundles with 207 sample datasets. Although most datasets are hypothetical, some are real-world data,
from which we chose. The six datasets were used for our 10 cases to be tested. If a dataset was used more
than once, we made sure that a different set of data variables was used in different cases.
7The Marina theme in SPSS Statistics 18.
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4.1.4. Survey Instrument. Each survey included four pages. Page 1 started with a brief
description about the dataset (e.g., the dataset on examining car insurance) and the
data variables (e.g., the car type and cost) used in the tested graphics. Page 2 displayed
the first simple graphic, followed by three questions. The first two were open-ended
questions, asking a participant to describe in free text the displayed graphic and the
obtained insights, respectively. The third question was a 7-point Likert scale question,
asking the participant how useful the displayed graphic is in general to answer the
first two questions. Page 3 displayed the second simple graphic encoding the same
dataset but with a different categorical variable, followed by the same three questions
as those on Page 2. After displaying two simple graphics, Page 4, the final page, pre-
sented a composite graphic, one of the compositions of the two simple graphics. This
page had five associated questions. The first two were open-ended questions asking for
the participant’s perception about the composite graphic, same as the first two ques-
tions on Pages 2 and 3. The third question was a multiple choice question, asking the
participant to assess the truthfulness of a list of five statements that describe the com-
posite graphic. This question was intended to assess the level of agreement between
participants’ understanding and our own understanding of the composite graphic. The
fourth question was a 7-point Likert scale question, asking the participant how diffi-
cult it was to use the composite graphic to answer the previous question (Question 3).
The fifth question asked the participant to explain in free text the type of difficulties
encountered. Appendix A contains the details of the survey questions.

4.1.5. Procedure. We initially launched a pilot study with 24 participants on Mechani-
cal Turk. Upon the completion of the pilot and verification of the quality of the results,
we deployed all 10 surveys and recruited 50 turkers for each survey. In addition to
paying attention to quality control issues such as work acceptance rate, geographic
location, reward, and punishment [Kim et al. 2012], we required a turker to enter a
minimum of 15 words for all open-ended questions. The answers were automatically
validated to meet this condition as the first round of filtering. Later on, each individ-
ual answer was read by the experimenters, and surveys with random answers were
discarded. Results of incomplete surveys were also discarded. Each participant was
allotted 20 minutes per survey. On average, it took approximately 10 minutes for a
participant to complete each of our surveys. Each approved completion was rewarded
1.50 US dollars. For the 10 surveys deployed, we collected a total of 514 completed
surveys,8 with between 48 and 55 completed results per survey.

4.2. Content Analysis Methodology

Participants’ generated textual descriptions of visualization is the primary data col-
lected for the study. An extensive and thorough methodology was developed to analyze
the content of these data.

4.2.1. Procedure. As described earlier, each survey contained three pairs of open-ended
questions aiming to collect the participants’ description and perceived insights for the
three displayed graphics, respectively. However, from the collected results, we found
that the participants did not distinguish between the two questions. They often wrote
insights for the description question or vice versa. Therefore, in our analysis, we chose to
treat each pair of the questions as one single question and read their answers together
as the participants’ description of the graphic. We collected a total of 514 × 3 = 1,542
pieces of free-text descriptions in 72,312 words, with each description containing 46.9

8Since turkers were directed to the surveys via a Web link, the number of completed surveys is different
from the number of assigned work due to possible confusions and mistakes by turkers.
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words on average. All of the descriptions were individually read and coded by three
investigators.

After an initial period of independent reading, the investigators convened multiple
times to discuss the findings. We also performed formal intercoder reliability test on the
coding results by computing Krippendorff ’s α, a statistical measure of the agreement
achieved in the coding results. We first tested on the coding results of two investigators
on one survey. The Krippendorff ’s α ranged from 0.25 to 1 [Hayes and Krippendorff
2007] for different codes, where 0 indicates the absence of reliability, 1 indicates the
perfect reliability, and a score higher than 0.7 is considered achieving acceptable relia-
bility in practice.9 By the testing score, the coding results were further examined, more
discussions on the disagreements ensued, and the coding scheme was further refined.
Detailed description of the coding scheme can be found in Appendix B.

Using the refined coding scheme, all three investigators independently coded all
of the collected data. After all investigators completed their coding processes, review
meetings were held again to go through all three sets of codings and discuss discrep-
ancies among the three sets. We found two main reasons causing the discrepancies.
First, the majority of discrepancies were caused by simple human oversights mostly
due to fatigue, as coding more than 1,500 pieces of free text with about 50 words in
each piece was an exhausting process, and it took more than a full month for all three
coders to finish their job independently. These oversights were reconciled quickly in
the review meetings. Second, the remaining discrepancies were the results of different
interpretations of the text, often due to inherent ambiguities in the text. For example,
one graphic showed the average years of education received by three races, respec-
tively, “black,” “white,” and “other.” One participant stated “white received more years
of education than other.” It was unclear whether to interpret “other” in this sentence as
in “other” race, or as in “other” than “white” (i.e., “black” + “other” combined). In such
cases, the discrepancies were not reconciled and were left as they were.

After reconciling the codings of three coders, intercoder reliability scores were calcu-
lated for all of the coding categories. The achieved α scores ranged from 0.76 to 1, with
an average of 0.95 across all coding categories, indicating strong consistency among
the coders.

4.2.2. Cognitive Semantics-Based Coding of Visual Insights. The development of our coding
scheme for visual insights followed a grounded theory influenced approach [Glaser and
Strauss 1967], where codings were developed and refined iteratively. The theoretical
basis of the analysis came from an emerging school of linguistics called cognitive lin-
guistics [Croft and Cruse 2004; Evans and Green 2006], in which a cognitive approach to
semantics [Allwood and Gärdenfors 1999; Talmy 2000] is one of the main thrusts. This
cognitive semantics approach proceeds by utilizing language as a key methodological
tool for revealing conceptual structure in people’s minds. Image schema is proposed as
such an abstract conceptual structure [Johnson 1990]. Space, Containment, Force, and
Locomotion are examples of the common image schemas arising from our interaction
with the physical world.

According to cognitive semantics, we should be able to uncover people’s understand-
ing (i.e., conceptual structure) of visualization by analyzing the linguistics descriptions
of visualization. The development of our coding scheme of visual insights is therefore an
investigation of the specialized image schemas arising from people’s interaction with
visualization. As such, the common properties of image schema were adhered to in

9To give readers an intuitive feeling of α: for binary data, a single disagreement out of 55 pairs of judgments
may bring it from 1 down to as low as 0.66 when data distribution is highly skewed, which is the common
case in our data.
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developing the visual insight types (see Table III). For example, the insights types are
all abstract (not specific to any particular visualization), analogue (resemble sensory
experience rather than symbolic), internally complex (consist of many subcomponents),
schematic (not detailed like mental images), multimodal (may involve not only visual
but also motor experience), subject to transformation (from one insight type into an-
other due to the shift of attention), and produced without conscious effort (consequently
require careful reading and introspection to uncover).

Since natural language text is prone to diverse interpretations due to its inherent
ambiguities or impreciseness, we developed and then followed a few general principles
to ensure coding consistency and to implement the cognitive semantics methodology.

(1) Binary and permissive scoring. If part of an answer matched a coding category,
the entire answer was counted as a match. For example, the description “incidents
spiked upward starting in 1960 and peaking during the 1965–69. After that, there
was a slight downward trend until 1975” contains information matching multiple
coding categories (Table III), including Identify Extrema (e.g., “peaking during the
1965–69”) and Characterize Distribution (e.g., “downward trend until 1975”). This
rule enhanced coding consistency among the coders.

(2) Text based scoring. The coding should rely only on semantic interpretation of
the sentences alone. Consider the statement, “I learned that the number of damage
incidents in the period 1975–79 was 7 times less than that of 1965–69.” Although
the two data points mentioned happened to represent two extreme values (highest
and lowest) in the graph, we treated such a case only as a value comparison but
not as an identification of extrema to avoid relying on data outside of linguistics.

(3) Semantic interpretation. Anchoring interpretation on the semantics rather than
on surface wording—for example, if a participant did not use superlative expres-
sions such as “Ship B has the highest number of incidents” but wrote “Ship B has
more incidents than any other ships.” We treated the description as identifying an
extreme value.

(4) Concreteness requirement. The text description must be concrete enough for
coders to mentally “picture” what is being depicted—that is, to invoke a specific
type of image schema of visualization. For instance, the description “the infant
mortality rate is directly related to the predominate climate of the region where
the baby was born” does not invoke any of the concrete insight types. In contrast,
the description “more infants are more prone to death in the tropical regions when
compared to other regions. desert regions stand at second place, maritime third
and temperate fourth. death rate is much lesser in arctic region” depicts a data
distribution of which a coder could draw a rough shape.

4.3. Results

In this section, we present our key findings of Study 1 and discuss them in the context
of the first set of research questions posed in the Introduction.

4.3.1. What Insights Are Derived? In an attempt to answer research question 1(a), we
developed a taxonomy of visual insights. The taxonomy is the result of reading and
discussing the participants’ descriptions of graphics based on the principles of cognitive
semantics. During the reading and coding process, new types of visual insights were
discovered, brought to discussion, and added to the coding category. In the end, eight
types of insights were cataloged. They can be organized into two groups: basic insights
and comparative insights.

Four type of basic visual insights were identified: Read Value (Va), Identify Extrema
(Ex), Characterize Distribution (Di), and Describe Correlation (Co). From a logic point
of view, one may argue that some of these are more basic than others. For example, Va
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Table III. Coding Schema: Taxonomy of Task-Oriented Visual Insights

Types Description
Basic Insights

Read Value (Va) Explicitly specify the measure variable value or its range for one
or more clearly identified data points.

Example: “The cost of claims for vehicles of age 0–3 years old is 310.”
“The mean occupational prestige scores for all racial groups

are between 35 and 45.”
Identify Extrema (Ex) Explicitly state the identities of the data points possessing

extreme values of the measure variable.
Example: “Women who exercise three to six times a week have the

lowest ratio of weight over desirable weight.”
“On average, white male respondents have the highest level

of education attained.”
Characterize Distribution (Di) Explicitly describe the variation of measure variable values

across all or most of the values of a category variable.
Example: “The racial groups ordered by their mean highest average

years of school received are white, other, and black.”
“The vehicle groups A, B, and C have similar mean average

cost of claims, whereas vehicle group D has a much higher
mean average cost of claims than others.”

Describe Correlation (Co) Explicitly describe the relationships between the values of the
measure variable and those of a category variable.

Example: “I learned that the older the vehicles are the lower the
mean average cost of claims seem to be.”

“As the number of siblings increases, the mean highest years
of school completed by the respondents decreases.”

Comparative Insights
Compare Values (VC) Explicitly contrast the values of the measure variable at some

identified data points in the display.
Example: “Males have slightly higher mean occupational prestige score

than females.”
“The mean average cost of claims for group D is higher than

that of groups A, B, and C.”
Compare Extrema (EC) Explicitly compare values of measure variables at two data

points both identified as extrema.
Example: “Even the most environmentally conscious conservative is

less concerned with the environment than the least
environmentally conscious liberal.”

“The highest mean occupational prestige score for male and
female respondents are similar.”

Compare Distribution (DC) Explicitly compare the characterizations of the measure variable
across all or most of the values of two category variables.

Example: “Male respondents, regardless of race, have a higher
mean occupational prestige score than their female
counterparts.”

“Across all level of education received, female respondents
are more concerned about the environment than male
respondents.”

Compare Correlation (CC) Explicitly compare the degree of associations of the measure
variable with one category variable in relation to that of another
category variable.

Example: “Regardless of race of the respondents, as the number of
siblings increases, the highest level of education attained
reduces.”

“The average cost of claims for vehicles tends to decrease as
vehicles get older for all groups, except for the oldest
vehicles in group D.”
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Fig. 4. Coding statistics of eight insight types. Refer to Table III for the definition of the insight codes.

may be argued to be the most basic type. However, from an image schema point of view,
these four types of insights have equal status, as each represents a unique conceptual
structure that pays attention to a different aspect of the experience of measuring some
quantities.

Comparative insights are higher-order insights that compare the results of the four
types of basic insights. Accordingly, there are four types of them: Compare Values
(VC), Compare Extrema (EC), Compare Distribution (DC), and Compare Correlation
(CC). The definitions and examples of these visual insights are listed in Table III. It is
very interesting to note that comparative insights are the only combinational insights
discovered. Other logically possible combinations, such as “Read value of extrema,”
“Identify extrema of correlation,” and so on, have not been found in our data. It is
possible that these novel combinations require conscious effort to generate and thus do
not fall into the category of image schema of visualization.

Figure 4(a) shows the intercoder reliability values for all insight types. As can be
seen, the α values range from 0.83 to 1, signaling a high level of agreement among the
coders.

To verify whether these eight types of insights are orthogonal dimensions in a taxon-
omy, we used a variable clustering technique [Sarle 1990] to group the insight types by
their degrees of correlations. The resulting dendrogram suggests that the eight types
of insights are highly independent from one another (Figure 4(b)). Since they do not
form obvious clusters, we now have a taxonomy consisting of eight orthogonal types of
visual insights.

4.3.2. How Are the Insights Distributed? To better understand how each type of graphic
correlates with different types of insights, we further examined how the types of in-
sights distribute among the graphics. To do so, we consider each participant’s descrip-
tion of a graphic a binary-valued eight-element vector, where each element denotes
the presence (with value 1) or absence (with value 0) of an insight type. As a result,
there are a total of 256 = 28 possible insight patterns for a graphic. How ever, we found
only 56 patterns from our collected descriptions. The distribution of the frequency of
these patterns by frequency rank (Figure 5) looks similar to that of Zipf ’s law [Zipf
1949]. Fitting a Zipf ’s law curve to the data yielded a good fit, R2 = 0.91, whereas other
estimates, such as log-log scale and exponential decay curve, did not show a better fit.
These results suggest that Zipf ’s law is a good model of insight pattern distribution,
especially when a larger number of patterns are present. The three most frequently
occurred insight patterns all contain a single insight type, and these are Compare
Values, Identify Extrema, and Describe Correlation, in descending order of frequency.
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Fig. 5. Distribution of insight patterns: frequency versus rank.

In addition, since our goal is to create composite graphics, we further examined how
insights distribute among different types of composite graphics. To see the patterns
of insight distribution for all participants, we visualized the coded data using an ex-
panded variation of parallel coordinate visualization [Inselberg and Dimsdale 1991],
taking advantage of the fact that our insight codings are binary. Figure 6 contains such
visualizations of insight distribution in each of the 10 compositions examined in our
study. In the visualization, each horizontal line represents one participant, eight in-
sight types are laid out along the x axis, a dot appearing on a position of a line indicates
the presence of the corresponding insight in that particular participants’ answers, lines
exhibiting the same insight pattern are drawn in the same color, and lines with the
same color are grouped together.

Using this visualization, we can detect certain patterns as to how insights are dis-
tributed and correlated with each type of composite graphics. For example, we can
easily identify the most common insight pattern for a composite graphic, as it is just
the largest group of lines with the same color in the chart. For instance, we can see that
a single insight type of Identify Extrema is dominating in Figure 6(t). We can also see
which insight type is the most common for a composite graphic by summing vertically
the total number of dots for that insight. For example, in Figure 6(p), almost all par-
ticipants have the insight of Compare Distribution. In addition, the overall diversity of
insights patterns for a graphic can be easily seen by the total number of colors used.
For example, Figure 6(r) has 15 insight patterns. Across different charts, we can also
see where a type of insight is likely to appear. For example, Compare Correlation is
most likely to occur in Nested Line, as in Figure 6(f) and (h), and Compare Extrema
happens almost only in Crossed Bar, as in Figure 6(j) and (i).

A Kruskal-Wallis test showed that the effect of graphic types on the likelihood of
insight occurrence was significant, p < 0.01, for all but Read Value. The likelihood of
Read Value is low for any type of composite graphics. Pairwise comparisons showed
that Nested Line is significantly more likely than others to generate both Correlation
and Compare Correlation insights; Crossed Line is likely to be associated with Compare
Values; Stacked Bar is more likely than others to have basic insights such as Identify
Extrema and Characterize Distribution, indicating its poverty in generating richer
insights.

4.3.3. How Good Are the Crowdsourced Visual Insights? Answering this research question
helps us calibrate the quality of the user-derived visual insights, which we intend
to use to guide the automated visualization compositions. To assess the quality of
our crowdsourced insights, we examined the results in two ways: (1) examining the
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Fig. 6. Composite graphics used in Study 1 and the corresponding insight distributions.
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Fig. 7. Quality of comprehension.

accuracy and depth of the participants’ insight descriptions and (2) comparing par-
ticipants’ choices of the insight statements about the graphics with those of the
investigators.

Quality of Insight Descriptions. All participants’ insight descriptions were coded in-
dividually in terms of their accuracy and depth by the three investigators using the
coding scheme shown in Appendix B.1. Intercoder reliability measured among the
investigators was adequate for the accuracy of description ratings (α = 0.8) and ac-
ceptable for the depth of insight ratings (α = 0.67). When all three investigators gave a
description a zero accuracy rating, the description was excluded from further analysis.
A total of 86 descriptions (5.6%) were removed. For the remaining descriptions, the
median of three investigators’ ratings was used in the analysis.

The overall frequency of different quality ratings for all descriptions are shown in
Figure 7(a).10 The three levels of accuracy are coded in increasing saturation of green
color, and the depth is similarly coded in blue color. Most descriptions were rated
as accurate and with normal depth. Only about 5% of descriptions were wrong or
superficial. This result suggests that people can derive quality visual insights from
information graphics, including the composite ones.

Agreement with Experts. During the design of the study, three investigators also
discussed and agreed upon the truth values of a set of five statements about each
composite graphic. We call them the experts’ choices. In our study, we asked each
participant to rate the truth value of each statement. We then calculated the level of
agreement between participants’ choices and that of the experts, each represented by
a five-element binary vector. We then calculate the degree of agreement between two
vectors by computing their Hamming distance [Hamming 1950] and subtracting the
distance from five (the maximum possible distance). Figure 7(b) shows the histogram
of levels of agreement obtained. As can be seen, the level of overall agreement is high
(median = 4). This result indicates that the participants recruited from the Internet
acquired similar understanding of the graphics as people who do research on visual
analytics, again confirming the quality of the crowdsourced visual insights.

4.3.4. How Easy Is It for a User to Comprehend a Graphic? Since we would like to generate
graphics that are easy to understand, we asked each participant to (1) rate the degree
of difficulty in comprehending a given graphic on a Likert scale and (2) answer an
open-ended question to substantiate his or her subjective rating of difficulty.

10The category of being both Wrong and Superficial is not shown, which accounts for 0.3% of responses. All
of the remaining situations had zero counts.
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Fig. 8. Difficulty of comprehension.

Degree of Difficulty. Each participant rated the degree of difficulty in using a graphic
to answer questions on a 7-point Likert scale, with 1 being very difficult and 7 being very
easy. Overall, the level of difficulty was rated as being “somewhat easy”(median = 5, see
also Figure 8(a)). However, the type of graphics had a significant impact on the rating,
(Kruskal-Wallis H4 = 0.25, p < 0.001). Pairwise comparisons showed that Stacked Bar
graphs were significantly more difficult to comprehend than Nested Bar and Crossed
Line graphs. Other pairwise differences were not significant.

Types of Difficulty. The participants were also asked to explain the rationale for giv-
ing their subjective ratings of difficulty. We coded the answers based on the scheme
shown in Appendix B.2. The intercoder reliability α test scores were 0.95, 0.96, 0.94,
and 0.94, respectively, for four identified types of difficulty: aesthetics, geometry, infor-
mation, and data (Table V in Appendix B).

We calculated the likelihood for a type of difficulty to occur by summing up its number
of occurrences divided by the total number of answers. Overall, the likelihood for the
participants to complain about any type of difficulty was 0.37. Figure 8(b) shows the
likelihood for each difficulty type to occur, where geometric difficulty occurred most
often, followed by informational difficulty.

It is interesting to note that the aesthetics of a graphic was of the least concern
for the participants. Therefore, it might not be a good investment to test “40 shades
of blue” when designing a visualization. Our participants indicated that they had the
most difficulty in comprehending the geometry of a graphic. Considering that our study
used only bar and line graphs, this result strongly suggests that visualization should
be geometrically simple in order for people to understand.

4.3.5. How Useful Is a Graphic for Deriving Insights? In our study, each participant was
asked to rate the usefulness of each given graphic on a 7-point Likert scale, with 1
being not useful at all and 7 being very useful. Overall, participants rated the graphics
in our study as “somewhat useful” (median = 5). This rating suggests that people can
generally appreciate the value of information graphics.

A Kruskal-Wallis one-way ANOVA test showed that this perceived usefulness varied
across different types of graphics, H6 = 53.1, p < 0.001. Pairwise comparisons indi-
cated that simple Line Graph graphics were rated significantly less useful than all
composite graphics except for Stacked Bar; simple Bar Graph graphics were rated sig-
nificantly less useful than Nested Bar and Crossed Line. All other differences were not
significant.

To help validate the hypothesis of composite graphics being perceived as more useful
than simple ones combined,11 due to the additional insights offered in the composite

11Ideally, one would like to compare the usefulness of a pair of simple graphics with that of their composite
graphics. As a limitation of the study, the surveys did not include such questions.
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graphics, we calculated the correlation between the number of insights perceived in a
graphic and its usefulness rating. A modest but significant correlation supported the
hypothesis, r = 0.19, p < 0.001.

4.3.6. Summary of Key Findings. We briefly summarize the key findings in term of ad-
dressing the first set of research questions set out in the Introduction.

Insights Types and Distribution. Eight types of visual insights were identified
(Table III). The insight types are orthogonal to one another. Several of them have
not previously appeared in the literature. The overall distribution of perceived insight
types follows Zipf ’s law, which implies that people are more likely to derive certain
types of insights than others. Composite graphics appear to be associated with distinct
patterns of insights (Figure 6).

Quality of Insights. The majority of user descriptions adequately captured the in-
sights exhibited in the shown graphics. Our participants’ judgment about the graphics
were also in agreement with that of experts.

Difficulty of Comprehension. Participants rated the task of using information graph-
ics to derive insights as “somewhat easy.” However, more than one third of participants
expressed certain difficulties. In particular, we found four main causes of the com-
prehension difficulty (Table V in Appendix B), with geometric type being the most
frequent.

Usefulness of Graphics. Overall, the graphics were perceived as useful. Graphics
providing richer insights were perceived as being more useful than others.

Our findings provide some jump-start knowledge for building automated graphics
composition systems:

(1) The derived taxonomy of visual insights provides us the starting point that allows
a user to express the type of visual tasks to be accomplished when requesting the
creation of graphics.

(2) Our understanding of the distributional properties of visual insights could help the
system optimize the limited visualization resources when achieving an intended
visual task. For example, if a user’s goal is to acquire multiple types of insights,
the system may then choose to compose one graphic capable of achieving multiple
insights at once instead of creating multiple graphics best for achieving each type
of insight. Here, the distributional properties of the visual insights can be used to
define the “weights” of a type of graphic for acquiring a particular type of insight.

(3) Those relatively rare types of insights are in the long tail portion of the Zipf ’s curve
and require special care in graphics design to support them (Figure 5).

(4) Three highly popular insights occur at the head end of the curve, appearing in
almost any type of graphics: Compare Values, Identify Extrema, and Describe Cor-
relation. When the set of visual tasks to support is not known a priori, it would be
prudent to choose the kind of graphics that support these three insights very well,
maximizing the chances of serving a user’s basic needs.

Our findings also suggest the effectiveness of different types of graphics when en-
coding the same amount of information. For example, our study showed that people
consistently have more difficulty with Stacked Bar graphics than with any other graph-
ics used in the study.

In our study, there was about 40% chance for people to express certain kind of difficul-
ties with commonly used graphics presented in the study. In addition, most difficulties
stemmed specifically from the geometric layout of the graphics. Thus, supporting the
effective design of visualization clearly matters.
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5. STUDY 2: RANKING COMPOSITE GRAPHICS

In Study 1, we focused on examining a person’s comprehension of information graphics,
especially the types of insights that one can derive from different information graphics.
The results show the usefulness of composite graphics in helping people derive different
types of visual insights. However, we did not study users’ explicit preferences for a
particular type of composite graphic in acquiring a specific type of insight. We thus
designed and conducted Study 2 to elicit explicit user input on which composite graphics
were preferred for deriving a specific type of insight.

5.1. Method

To elicit a user’s preference for composite graphics, we designed test sets targeting each
of the eight types of insights identified in Study 1. Specifically, for each type of insight,
we designed two test sets using two different datasets from Study 1. As described later,
we used the two sets of results to assess the result reliability. Each test set consisted
of three parts.

The first part displayed five composite graphics side by side, each of which was
uniquely labeled. The five composite graphics used in this study were the same five
types of composite graphics used in Study 1 (Figure 6). In this study, they encoded
the same dataset with different composition operators. The second part was a yes-
no question, designed to test whether a participant could derive the intended insight
from the five graphics displayed earlier. Here is a sample question on the insight type
Compare Values: “At four to seven years of age, do sedan and luxury sedan have similar
claim cost?” The question statement was selected from the turker’s input in Study 1
but rephrased as a yes-no question.12 If needed, minor edits were made to improve the
readability of the statement. The third part asked the users to rank the five composite
graphics in the order of their suitability to answer the question.

This experiment is a between-subjects design, where eight groups of participants
were recruited, with each group working on one of the eight types of insights. After a
small pilot study, we recruited 30 turkers for each group, with a total of 240 participants
for eight groups. Before the actual task started, each participant was asked to perform
a pretest, where he or she was asked to rank five dummy graphics by a simple criterion.
This qualification test ensured that participants know how to rank graphics and helped
filter out inattentive participants who produced wrong answers.

5.2. Results and Analysis

The goal of Study 2 was to discover which type(s) of composite graphics are preferred
for deriving a specific type of insight. It was achieved by obtaining the rankings of the
five types of composite graphics for each of the eight types of insights. For each type
of insights, the ranks of five graphics were compared using Friedman tests [Friedman
1937]. The effects of graphic type are statistically significant for all insight types.
Figures 9 and 10 summarize the results. For each insight type, we list the graphics by
their median ranks in ascending order from left to right. By this representation, the
graphic at the left-most position is the most preferred choice for the given insight type.
When several graphics do not differ significantly in the pairwise comparison, they are
grouped and underlined together.

To assess the reliability of the derived rankings, we compared the rankings derived
from the two test sets in each type of insight. Using the Mann-Whitney test, we found
the rankings reliable, since there were no significant differences between two rankings

12The statement testing Va differed from others. We used a text box to solicit a numeric value. The answer
was validated to contain at least a number, or the system would not go forward. The goal here was to
encourage participants to engage in creating conceptual structure of Va.
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Fig. 9. Preference of composite graphics for basic insights (rank 1 is the most preferred).

Fig. 10. Preference of composite graphics for comparative insights (rank 1 is the most preferred).

for all cases, with two exceptions: the ranks of Nested Line graphics (4 vs. 5) in Char-
acterize Distribution and the ranks of Stacked Bar (3 vs. 4) and Nested Bar (2 vs. 3) in
Read Value were slightly different.

It is interesting to note that Cross Bar was consistently ranked among the most pre-
ferred choice, whereas Stacked Bar was consistently ranked among the least preferred
except for Read Value (Figures 9 and 10). For comparative visual tasks, the Nested Line
chart was also consistently ranked among the most preferred ones.

Based on our findings, we can build a system that will recommend appropriate com-
position operators for a given visual task (e.g., reading a value or making a comparison).
Let us take the car-buying scenario introduced earlier as an example (Figure 2). If the
couple want to compare how the claim cost changes with the age for two different vehi-
cles, a Compare Correlation task, Crossed Line (Figure 2(c)) would be their top choice.
In contrast, if they simply look for the least expensive vehicle with the youngest age,
an Identify Extrema task, a Crossed Bar (Figure 3(a)) would be the best option.
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In the case of not knowing users’ potential tasks a priori, a default approach is to
weigh all of the tasks by their expected likelihood of occurrences. By doing so, the most
preferred composition is a Crossed Bar graphic, since it is the top-ranked graphic for all
of the three most frequently perceived insights for composite graphics. In other words,
the Crossed Bar graphic can be considered a universal default composition.

6. IMPLICATIONS

To control the scope of our study, we focused on examining two most commonly used
business graphics and their composites: bar and line graphs. Prior to our study, we
were worried about the significance and applicability of our results due to the lim-
ited study scope. As summarized earlier, our study results not only help answer our
two original sets of research questions but also bear two important implications on
user-centered visualization research. First, our study results help develop advanced,
user-centered visualization systems that are traditionally difficult to build due to a
lack of computational foundations built on top of rigorous empirical evidences. Second,
our methodology of crowdsourcing nontrivial users’ visual cognitive tasks and rigor-
ously analyzing the crowdsourced results can be applied to a wide range of empirical
investigations in visualization research.

6.1. Applications of Crowdsourced Results

Not only do our study results provide us with guiding principles for visualization com-
position, but they also help us develop intent-driven information graphics generation
and retrieval systems.

6.1.1. Intent-Driven Information Graphics Generation and Retrieval. The main motivation of
our work is to lay foundations for building automated visual composition systems,
where users can compose complex graphics from existing ones without having to deal
with many challenges in the process, such as data composition and visual encoding of
multidimensional data. Although our study results directly help achieve such a pur-
pose, they also facilitate the development of intent-driven graphics generation systems.
In particular, the insight taxonomy developed in the study (Table III) helps map a user’s
high-level intent (i.e., visual insights to be perceived and conceptual structure to be
created) to one or more desired target graphics. This approach is similar to the use of
user perceptual tasks to guide visual composition [Casner 1991]. Unlike the previous
work, however, our taxonomy is backed up by solid empirical evidences that associate
a user’s intent (visual insight) with the underlying desired graphics. As a result, we
can develop a high-level declarative visual language based on the insight taxonomy to
support intent-driven visualization. Given a description of the visual insight that one
is seeking, the system can automatically generate the appropriate visualizations that
match the visual insight.

In addition, users can also use the intent to search for existing information graphics.
Finding a target information graphic is challenging, as an information graphic is often
complex and difficult to describe. Since our results record the connections between an
intent (visual insight) and a graphic, we can also automatically annotate and index the
similar type of information graphics by the matching intent. As a result, such infor-
mation graphics can then be searchable by their semantics (intent). Such intelligent
visualization generation and retrieval systems operate at a level much closer to users’
native domains of knowledge and intuitions than to the often unfamiliar data and
visualization details.

6.1.2. Natural Language–Driven Information Graphics Generation and Retrieval. Given an
intent-driven visualization system, the next natural step would be to build a natural
language (NL)-based user interface to data visualization. Since our studies collected
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users’ descriptions about their intent in the form of NL, such data can be used as a
training corpus for such a system. For example, the users’ NL input can be used as a
training corpus to automatically generate textual captions for all similar information
graphics. Such automatic caption generation also helps achieve better accessibility to
the graphics (e.g., helping visually impaired people comprehend the graphics). For an-
other example, our collected NL descriptions of graphics can also be used as a training
corpus for a system to allow a user to express his or her intent in NL. Such a system
will automatically map the user’s NL input to one or more intent descriptions and then
generate the target graphics that satisfy the intent. Note that our distributional analy-
sis of the insights can also be helpful for the system to resolve ambiguities rising in NL
interpretation. For instance, if a user’s intent from his or her NL input is ambiguous,
the system may ask for clarification based on the distribution of the insight types (e.g.,
asking for the more likely insight type first).

The general theme behind our ideas is to leverage crowdsourced empirical evidences
to jump-start and help build more intelligent visualization systems that are tradition-
ally very difficult to develop. As we leverage our study results toward this direction, we
hope that both the HCI and information visualization communities work together to
develop empirical approaches for advanced visualization systems, especially by lever-
aging the power of the crowd to develop people-centric visualization systems.

6.2. Crowdsourced Research Methodology

Previous work has demonstrated the effectiveness of crowdsourced approaches to un-
derstanding one’s visual perception [Heer and Bostock 2010]. Given the crowd diversity
(e.g., skills diversity in turkers), however, there is little evidence on the effectiveness of
crowdsourced approaches to complex visual cognitive tasks or on the quality and relia-
bility of the crowdsourced results for such tasks. Since our studies aimed at examining
users’ comprehension of information graphics in depth and at scale, our methods of sys-
tematically instrumenting crowdsourced studies and rigorously analyzing the quality
and reliability of crowdsourced results can be used to investigate users’ visual cogni-
tive behavior in a way that has never been done before. Moreover, our content analysis
method, including the coding principles based on cognitive semantics, is valuable to
researchers who also wish to harvest crowdsourced rich content.

6.2.1. Crowdsourcing Users’ Understanding of Graphics via Text Input. One way of under-
standing users’ comprehension of graphics is their own verbal (textual) description of
the graphics [Goldsmith 1984]. Although there are other works on studying users’ lan-
guage use in describing graphics [Metoyer et al. 2012], our work shows the feasibility of
crowdsourcing users’ input from a large number of people (i.e., more than 500 people)
on the Internet. Our approach of combining introspection-based semantic analysis and
corpus-based statistical analysis produces highly replicable results. We also show how
to assess the quality and reliability, including consistency, of the crowdsourced results
to determine the effectiveness of our approach. Since our results demonstrate a high
level of quality and reliability among user input, we believe that our approach can
be effectively applied to study users’ comprehension of any other types of information
graphics beyond relational graphics, such as network diagrams and text visualization.

In addition, the goal of our content analysis is to uncover conceptual structures in-
duced by graphics. As suggested by the study results, simpler graphics facilitate the
discovery and categorization of more generally applicable visual insights. According to
the theories of cognitive semantics, such basic conceptual structures are the building
blocks of more complex conceptualizations. As a first study of this kind, this arti-
cle focuses on building a solid foundation for understanding complex and interactive
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visualization. Therefore, the results of the study are very generalizable, because the
understanding of complex and interaction visualization can only be based on them.

One key principle of the cognitive semantic approach is the so-called embodied cogni-
tion thesis, which states that our conceptual structures are originated from our bodily
experience and the abstract thoughts are metaphorical projection thereof [Lakoff and
Johnson 2008; Lakoff 1987]. For data visualization, what is the embodied experience
that the people can drawn upon? From our content analysis of description of visual-
ization, a viable hypothesis is that the measurement experience in the physical world
provides the necessary foundation for creating the conceptual structures for visual-
ization. All eight types of visual insights discovered have clear corresponding physical
measuring processes. One implication for creating comprehensible visualization is to
draw inspiration from physical activities that people perform in the physical world.

6.2.2. Crowdsourcing Information Visualization Taxonomy. As part of the study results, we
obtained a taxonomy that characterizes the user-identified insights from the graph-
ics under study (Table III).Previous efforts on constructing visualization taxonomies
(e.g., Casner [1991], Amar et al. [2005], Chuah and Roth [1996], Kosslyn [1989],
Shneiderman [1996], and Zhou and Feiner [1998]) were either based on visual cog-
nitive theories or limited experimental results. In contrast, we used a crowdsourced
approach to collect a large quantity of data (i.e., more than 1,500 insight descriptions)
in a short period of time (i.e., within a couple of days). The collected data set also
allowed us to discover several insight types not previously reported in the literature,
such as Compare Extrema, Compare Distributions, and Compare Correlations. On the
other hand, with only eight types of insights, the absence of more types seem to be
more surprising. For example, the composite insights are all comparative types rather
than of other possible combinations. The cognitively viable conceptual structures do
not seem to occupy the full space of possible structures.

Furthermore, the collected large dataset helped us measure the properties of a taxon-
omy. For example, we were able to measure the distributional properties of the insights
in our taxonomy and found the insight patterns to be distributed according to Zipf ’s
law. In addition, three insight types, Compare Values, Identify Extrema, and Describe
Correlation, exhibit a much higher frequency of occurrences than others. Such findings
are useful especially when applying the taxonomy to guide the creation of information
graphics. For example, if a user’s goal is to explore a dataset from different aspects,
the system should perhaps start with the information graphics that can help the user
extract the insights that the user is most familiar with to reduce the barrier (cognitive
load) to entry.

In short, our crowdsourced methodology can be used to collect data from a large
number of users quickly and analyze the quality and reliability of the collected re-
sults rigorously. We believe that our methodology can be applicable to a wide array
of HCI-driven information visualization research, ranging from understanding users’
comprehension of a specific type of information graphics to building a comprehensive,
empirically validated visualization taxonomy.

7. LIMITATIONS AND FUTURE WORK

Although our work offers unique value to both HCI and visualization communities, we
have found several areas that warrant future work.

Coverage of Insights. From the insight descriptions produced by our participants,
more than half of such descriptions contained only a single insight. This phenomenon
may not signal people’s inability to derive multiple insights from an information
graphic. Instead, it could be an artifact of the experiment settings, where turkers
just wanted to write down the first insight coming to mind to finish the task quickly.
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Although our original goal was not intended to investigate the coverage of insights
communicated by an information graphic, we found this to be an interesting research
topic. For example, if an information graphic is capable of achieving multiple insights
simultaneously, a system may choose to use such a graphic for accomplishing multiple
visual tasks (e.g., reading value and making a comparison) instead of using multiple
graphics. The research challenge here is how to motivate participants to extract as
many insights as possible. Besides providing incentives for the participants (e.g., giv-
ing a monetary bonus for each insight extracted), alternative study approaches such
as essay writings or interviews might be used.

Factors Affecting Insights. Our studies allowed us to characterize users’ understand-
ing of relational graphics and observe different insight patterns perceived across rela-
tional graphics. Although such patterns are useful for a system to recommend suitable
relational graphics for deriving a particular insight, other factors that we have not
systematically studied could also affect the choice of the graphics. Such factors include
the characteristics of the dataset, the number of data points to be encoded, a user’s vi-
sual preferences, and the interaction context. In our studies, we have already observed
the influence of certain factors. For example, Identify Extrema needs obvious extreme
data points, whereas Describe Correlation needs significant trending character in the
dataset. Note that previous research efforts have investigated the influence of vari-
ous factors on the use of information graphics, such as data characteristics [Zhou and
Feiner 1996] and interaction context [Wen et al. 2005; Gotz and Wen 2009]. However,
most of such work relies on a very limited number of case studies instead of building on
collected significant empirical evidences as we do. Thus, it would be interesting to use
the methodology similar to ours to collect empirical evidences and systematically in-
vestigate the influence of other factors on the generation and composition of relational
graphics.

Understanding Other Visualizations. Our current studies focus on relational graph-
ics; however, it would be interesting to apply our research methodology to study other
types of visualizations. The purpose of this extension is twofold. First, it will help
generate a more complete taxonomy of visual insights. Second, it will help us further
refine and augment our current empirical methodology in crowdsourcing and analyzing
users’ comprehension of general information graphics. For example, if we ask people to
comprehend information graphics with which they are unfamiliar, what type of results
would we get? Would the people be unable to describe their comprehension at all or
inaccurately describe their comprehension? As one of the most powerful features in in-
formation graphics is its interactivity, it is an extremely important research direction
to investigate how to adopt our current methodology to study interactive visualizations.
This extension will be especially challenging on an open crowdsourcing platform where
the participants must be carefully guided to perform visual interaction tasks that few
research efforts have addressed.

The studying of simple graphics in the article is congruent with our research goal of
deriving a set of cognitively solid conceptual structures to be used as building blocks to
understand more complex visualizations and tasks. The simplest graphics allow us to
uncover the most generally applicable visual insights. One challenge of more complex
and unconventional visualizations is that they are often very removed from the bodily
experience with which people are familiar. For these complex visualizations, the simple
image schema–based insight types uncovered in this article may still serve as the basic
building blocks for the corresponding conceptual structures, but understanding their
dominant features may require higher-level machinery of cognitive semantic, such as
frame [Fillmore 1985; Barsalou 1999], metaphor [Lakoff and Johnson 2008], metonymy
[Kövecses and Radden 1998], mental spaces [Fauconnier 1994], and conceptual
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blending [Fauconnier and Turner 2008]. It is our hope to see a fruitful marriage be-
tween visualization research and cognitive semantics.

8. CONCLUSIONS

To support the composition of two or more existing information graphics, we are build-
ing an automated graphic composition system. As an initial step, we would like to
acquire a thorough understanding of people’s comprehension and preferences of com-
posite graphics under various conditions (e.g., data and tasks). Toward this goal, in this
article, we have reported two crowdsourced studies conducted on Amazon Mechanical
Turk involving more than 750 questionnaires. Our first study focused on examining
users’ comprehension of graphics to derive visual insights. The second study was on
extracting users’ explicit preferences of composite graphics for achieving various visual
tasks. As a result, our studies present several key findings. First, we have identified
eight orthogonal types of visual insights along with their distribution properties among
different types of graphics. We have also found that the type of compositions signifi-
cantly affects the kinds of insights to be acquired. For each type of insights, we have
obtained explicit user preference orders for each type of composite graphics. Not only
do our findings provide the foundation for building an intent-driven automated visual
composition system, but our work also bears important implications to the HCI and
visualization communities. In particular, our crowdsourced methodology for analyz-
ing crowdsourced rich content and developing visualization taxonomy can be extended
to conduct a wide range of empirical studies in visualization. Moreover, our crowd-
sourced results can be leveraged by the communities to build intent-driven, NL-based
visualization generation and retrieval systems.

APPENDIX A: STUDY 1 SURVEY QUESTIONS

After introducing the dataset and the variables involved, the second page of the survey
displayed a simple graphic followed by three questions. The first two were open-ended
questions:

Please describe the graph in your own words. You may start your description like “This graph
shows. . . .””.

What insight, observation, or information have you gained from this graph? You may start your descrip-
tion like “I learned that. . . .”

Turker’s free-text responses to these questions were the raw materials of our content
analysis.

The final question was a 7-point Likert scale question:

How useful is this graph for you in general (e.g., helping you learn about the topic or satisfy your curiosity
about the topic)?

The third page displayed the second simple graphic encoding the same dataset but
with a different categorical variable, followed by the same three questions as on Page 2.

After displaying two simple graphics, the fourth page, also the final page, presented
a composite graphic that was one possible composition of the two simple graphics. It
also had three associated questions. The first was a multiple choice question:

According to the graph, which of the following statements are true? Check all true statements.

Five choices were provided to describe the composite graphic. This answers were
used to assess the level of agreement between the turker’s understanding and our own
understanding of the composite graphic.
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Table IV. Coding Scheme: Quality of Descriptions

Code Description
Accuracy

0 Wrong Incomprehensible or completely wrong/irrelevant description.
Example: “I learned that there are a lot of people who need car insurance.”

1 Partial Part but not all of the description is correct.
Example: “The graph shows that the average cost of claims decreases with

vehicle age, with vehicles that are 10 years or older costing the least.
I learned that the average cost of claims does not increase with the
age of a vehicle.”
The first half of the description is correct but the second half is
wrong.

2 Correct The description is correct.
Example: “I learned that the older the vehicle, the lower the mean average cost of

claims is.”
3 Superb The description not only is correct but also contains fine details and/or

qualifications.
Example: “Vehicle age is an important factor because the difference of 7–8 years

in a car’s age can change the cost of claims by more than 50%”
Depth

1 Superficial The description contains no substantial information beyond the variable names
and the type of the graphic.

Example: “I learned that ratio of average weight over the desirable weight differs
by the frequency of vigorous activities.”

2 Normal The description contains specific information directly perceivable in the graphic.
Example: “I learned that those who exercise less than once a week have the

highest ratio of weight over desirable weight.”
3 Speculative The description contains not only perceivable information but also the

participant’s own injected information, such as assumptions, hypotheses,
rationale, and so on.

Example: “Just from this graph, I learned that more exercise means being closer
to the desirable weight. However, the graph does not take into
account those who exercise more than once per day, who probably
weigh more because of increased muscle mass.”

The second question was a 7-point Likert scale question:

How easy was it to answer the previous question using the graph above?

The final question in our survey was an open-ended question:

For the previous question, explain the reasons for your rating.

Free-text input to this question was used to analyze the type of difficulties that people
may have with the composite graphic.

APPENDIX B: STUDY 1 CODING SCHEME

We coded the written descriptions of participants for all of the open-ended questions
according to a coding schema. The definitions and examples of the codes are described
next. All of the examples are the actual text written by participants. The coding schema
consists of three aspects, as follows:

B.1. Quality of Descriptions

We coded the quality of participants’ descriptions of graphics along two dimensions,
the accuracy of description and the depth of insights, as shown in Table IV.

The accuracy of description measures the degree of the text description matching the
content of the corresponding graphic. If the text does not actually describe the meaning
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Table V. Coding Scheme: Types of Difficulty in Comprehension

Code Description
Aesthetics Issues related to the aesthetics of a graphic (color, background, etc.).

Example: “The graph bars and the background color do not have a very good
contrast.”
“The three shades of purple are somewhat hard to tell apart.”

Data Issues related to understanding the nature and the ambiguity of data.
Example: ‘Isn’t clear whether the holders of bachelor’s degrees are being counted

separately from those with bachelor’s degrees and higher degrees
(i.e., graduate).”
“In the left-side scale, it is not shown the units, just the value. How to
know what is it?”

Geometry Issues related to the geometric aspects of a graphic (layout, shape, scale,
size, etc.).

Example: “The graph did not give a very good scale on the Y axis. As a result it
was a little confusing.”
“Since the graphs aren’t overlapping, it makes it difficult to tell
whether some of the points were higher or lower than other ones”

Information Issues related to the nature and the amount of information being represented.
Example: “The graphs consisted of too much information, so it became a bit

confusing.”
“As I do not properly understand the graph, I cannot say that I got it
fully.”

of the graphic, it is rated as wrong. There are also cases of partial accuracy, where some
parts of the text depict situations contrary to the situation in the graphic. If all parts of
the description match what are shown in the graphic, it is coded correct. In some cases,
the descriptions are not only correct but also are very detailed (e.g. noticing subtle
patterns); they are coded as superb.

The depth of insights reflects the level of mental engagement of the participants
with the graphics. A superficial description contains mere recitation of the variable
names shown in the graph and the name of the graph type shown. It does not involve
the pattern recognition, interpretive, and integrative processes necessary to decode the
meaning of the graphics [Carpenter and Shah 1998]. A normal description contains
the outcome of the processes shown, whereas a speculative description reflects not
just those shown but also the outcome of some inference processes that involve the
participants’ own knowledge, beyond what the graph itself entails.

B.2. Types of Difficulty in Comprehension

We developed a taxonomy of participants’ difficulties in understanding the graphics.
These were coded using binary codes (presence or absence), according to the partic-
ipants’ written rationale on their easiness ratings for understanding each graphic.
Table V shows the definitions and examples of the four types of difficulties: aesthetics,
data, geometry, and information.
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