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ABSTRACT
Time-consuming and complicated best describe the current
state of the Information Extraction (IE) field. Machine learn-
ing approaches to IE require large collections of labeled
datasets that are difficult to create and use obscure mathe-
matical models, occasionally returning unwanted results that
are unexplainable. Rule-based approaches, while resulting
in easy-to-understand IE rules, are still time-consuming and
labor-intensive. SEER combines the best of these two ap-
proaches: a learning model for IE rules based on a small
number of user-specified examples. In this paper, we explain
the design behind SEER and present a user study comparing
our system against a commercially available tool in which
users create IE rules manually. Our results show that SEER
helps users complete text extraction tasks more quickly, as
well as more accurately.
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H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
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INTRODUCTION
With the growing amount of unstructured and semi-structured
text, Information Extraction (IE) is becoming increasingly
important. IE is at the core of many emerging applications,
such as eDiscovery, brand management based on social media,
and risk analysis using financial reports. Despite significant
advances in IE in recent years, IE solutions continue to be
expensive. Users either have to train machine learning models
with large labeled datasets or manually develop extraction
rules in a scripting language such as Python or Perl, or a
special data extraction language. In particular, while the rule-
based approach is widely used in practice for its explainability
and maintainability [9], developing IE rules is known to be
time-consuming and labor-intensive.

To illustrate, suppose you are an analyst given a set of docu-
ments to extract financial revenue information. As a novice
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developer, you spend hours learning and debugging code in
Python. Finally, your script reads each document and prints
every instance at which the dollar sign appears. As you an-
alyze the extractions and compile varying target extractions,
you iteratively improve the extraction results, e.g. keep only
text that contains financial terms such as ‘revenue’ or ‘annual
income’, until you achieve the desired quality of results.

SEER addresses the key challenges in the development cycle
of IE scripts or rules by (1) reducing the barrier of learning
a new programming language for novice developers, and (2)
minimizing the time-consuming, manual effort required in
constructing rules. SEER is an IE tool that suggests easy-to-
understand extraction rules from a small set of extracted-text
examples provided by users. Users provide examples by high-
lighting text from documents that they wish to extract. Based
on the highlighted examples, SEER learns extraction rules in
Visual Annotation Query Language (VAQL) [20]. VAQL is a
commercially available declarative graphical language for IE
rule development that is simple, yet powerful and expressive.
It consists of primitives that capture tokens of a pre-defined
concept (e.g., telephone numbers, names or organizations), or
that match a regular expression or a literal, among others, as
well as constructs for combining these primitives.

SEER’s learning algorithm only requires a few examples to
correctly suggest rules; in addition, it ensures that the sug-
gested rules are diverse in structure: they contain different
primitives. Thus, SEER’s learning algorithm is necessarily
heuristic in nature; heuristics are used to encode and leverage
domain knowledge that would otherwise be unavailable to
the algorithm in the absence of a large labeled dataset. For
example, by observing rule developers constructing rules in
VAQL, we noticed that certain primitives are preferable to
others. For example, most users prefer a rule with a pre-built
primitive that captures telephone numbers to a rule with multi-
ple regular expression primitives that capture different parts
of a telephone number. SEER’s heuristic algorithm utilizes
this natural preference ordering of primitives to rank its sug-
gested rules. SEER is thus a sweet spot between data-hungry
machine learning techniques (including probabilistic rule gen-
eration methods) that require large labeled datasets to ensure
robustness [28] and manual rule development systems like
VINERy [20]. With SEER, we demonstrate that heuristics are
a powerful method for human-in-the-loop synthesis systems
of extraction rules; they help guide and minimize the search
space, turning only a few data examples into a small set of
diverse rules with high accuracy and coverage.
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Users highlight text and labels it “positive 
example” or “negative example”.

Users can easily keep track of their highlights. 
When ready, they ask Seer to suggest some rules. 

Certain extractions require multiple rules: Seer 
opens different tabs for different rules.

Seer allows users to disambiguate their 
intent by providing more examples for 
users to label as positive or negative. 
Seer eliminates examples that could 
lead to conflict.

The active rule set: Seer suggests 
rules that are consistent with the 
examples the user highlighted as 
well as their disambiguation 
choices.

As the user selects a rule, its 
execution results are 
immediately presented.

Users can export results 
or tweak a rule before 
execution.

Figure 1. SEER’s Interface

In general, users are more effective at making a selection
when presented with fewer options to choose from. Therefore,
alongside the initial set of suggested rules, SEER displays
a collection of extractions, known as refinements, that help
differentiate the suggested rules. Based on user feedback
(accept or reject) on these refinements, SEER further refines
the set of suggested rules.

We compare SEER’s automatic rule suggestion to manual rule
creation in VINERy [20], a commercially available drag-and-
drop interface for VAQL extraction rules. Our results show
that users complete text extraction tasks more quickly and
accurately with SEER. By requiring examples as input, SEER
reinforces a more thorough approach to IE: users closely in-
spect the dataset, provide more extraction variations and verify
the correctness and completeness of an extraction rule.

Outline. In this paper, we give an overview of SEER, and
present the heuristic learning algorithm, the ranking of VAQL
primitives, and the refinement suggestion algorithm. We then
present our user study results, and discuss prior work in IE.

UI OVERVIEW AND WALKTHROUGH
We explain how a user, Bob, can use SEER to construct an
extraction rule that extracts dates (e.g. January 29, 1999) from
a data set of press releases. Bob performs the following steps:

1. Highlights Examples: Bob begins by analyzing his data,
shown on the left-hand side of the interface (Figure 1). Since
Bob wishes to extract dates, he searches for the months and
highlights an example of a date and SEER colors it with a
yellow highlight. Bob then indicates whether it is positive or
negative. The highlighted text will be added in the tables under
the document. After Bob finishes highlighting the examples
‘February 29, 2016’ and ‘January 1986’ as positive examples
and ‘John B. Smith’ as a negative example, Bob clicks the
“Suggest me some rules!” button. SEER requires at least one
positive example before it can start learning rules.

2. Refines Rules and Analyzes Results: Once SEER learns
rules consistent with the examples, the right-hand side of the
interface (Figure 1) shows: (1) a list of refinements and (2)
a list of suggested rules. Refinements are extraction results
of the suggested rules that the user can accept or reject to
further filter the suggested rules. Accepting and rejecting
extractions is a quicker alternative to manually analyzing each
rule. After a few refinements, Bob is left with a few rules.
Bob selects one of the rules, and SEER executes the rule. The
extraction results (called extractions) appear in the results
table on the bottom right panel, and are highlighted in green
in the document view on the left-hand side. Bob can analyze
and verify the extractions by scrolling through the results table
or the documents. If Bob is not satisfied with any of the
suggested rules, he can add more examples or edit one of the
rules directly.

PRELIMINARIES
Before we describe how SEER infers rules from examples, we
will first define terminologies used throughout the paper.

Underlying Language of SEER
SEER’s rules are specified using a subset of Visual Annota-
tion Query Language (VAQL) [20], and are executed with
the SystemT engine [16]. When given user-provided text
examples, SEER infers rules in VAQL and suggests the easy-
to-understand rules, in graphical form, to the user.

Tokenizer
Rules extract text from documents pre-tokenized by VAQL.
VAQL delimits text on whitespace characters, such as spaces,
newlines, tabs, etc.. VAQL considers symbols like dashes,
commas, etc., as tokens. Hence, ‘1998-Jan14’ would have the
following tokens: ‘1998’, ‘-’, and ‘Jan14’. VAQL also has a
multilingual tokenizer that handles more complex delimiters.
However, non-English text is outside the scope of this paper.
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Primitives and Rules
SEER learns a disjunctive union of VAQL sequence rules,
where each rule consists of a sequence of one or more extrac-
tion primitives, of one of the types listed below. The results
of executing a rule or primitive over the input text are called
extractions. We say that a rule (or primitive) captures a token
(or a sequence of tokens) if the token (sequence of tokens) is
among the extractions of the rule (primitive) on the input text.

• Pre-built: Pre-builts capture the tokens (one or more) of a
particular concept such as organization, person, phone num-
ber, etc. For example, the pre-built P: Percentage captures
percentages like ‘8 percent’ and ‘50.5 percent’. Pre-builts
can capture multiple tokens.

• Literal: Literals capture one or more tokens matching an
exact string. For example, the literal L: ‘percent’ captures
all tokens ‘percent’ that appear in the text.

• Dictionary Dictionaries contain a set of literals and cap-
ture tokens that match one of those literals. For example,
the D: {percent, dollar} captures any of the two words that
appear in the text.

• Token Gap: Token gaps skip over a number of tokens.
Token gaps cannot be placed in the beginning or end of a
rule. Within the rule, L: ‘50’ T : 0-3 L: ‘percent’ , the token
gap T : 0-3 skips over zero to three tokens to capture the
following: ‘50.5 percent’ or ‘50 percent’.

• Regular Expression: Regular expressions can be any one
of the following: R: [A-Za-z]+ captures a token consisting
of letters, R: [0-9]+ captures a token consisting of digits,
and finally R: symbols captures tokens consisting of sym-
bols such as $, !, #, etc. One can easily extend the base
regular expressions.

Users may supply their own pre-builts in addition to the default
pre-builts in VAQL. Such pre-builts can be rules from other
primitives. For instance, a user can import a pre-built for
ordinal numbers, P: Ordinal Numbers , which he created from
a dictionary primitive, D: {first, second, third} .

SEER can execute multiple VAQL rules, consequently permit-
ting overlapping extractions captured by different rules. For
instance, a rule capturing percentages may have overlapping
extractions with a rule that captures numbers, e.g. ‘50.5 per-
cent’ overlaps with ‘50.5’. While VAQL allows the user to
manually add a consolidation to the rules to combine the over-
lapping extractions, VAQL does not impose the requirement
of disambiguating between the extractions. The output of ex-
ecuting multiple rules is a disjunction of all the extractions.
Learning rule consolidations is outside the scope of this paper.

Primitive Scores
Scores are assigned to primitives and rules in order to prune
the search space of feasible rules by eliminating low-scoring
rules. Our scoring function is based on our hypothesis that
rule developers prefer certain types of primitives for different
types of tokens. We, therefore, assign scores to primitives
based on this preference ordering. In the results section, we
show that our hypothesized ranking of primitives is supported

by the results. The score of a primitive is influenced by the
semantics and syntactic properties of the token.

Semantic and Syntactic Tokens
There are two types of tokens, semantic tokens and syntactic
tokens. A token is semantic if: (1) it can be captured by a
pre-built, or (2) it appears more than once across the positive
examples and does not appear in the negative examples. A
token is syntactic if it is not semantic.

For each token type, SEER defines two different partial orders
of the primitive types in order to quantify developer default
preferences. If a primitive’s token is semantic, then its score
is obtained from the semantic scale; otherwise, its score is
obtained from the syntactic scale. The scales are shown in
Figure 2. Primitives are shifted to the end of the syntactic
scale to make scores comparable to that on the semantic scale.

0.0 1.0 0.2 0.4 0.6 0.8

Regex
Token Gap

Dictionary
Literal

Pre-builts

(a) Semantic Scale

Regex
Token Gap

Dictionary
Literal

1.0 0.2 0.4 0.6 0.80.0

(b) Syntactic Scale

Figure 2. Scales for semantic and syntactic tokens. Note that the pre-
builts cover a range, since there are ranks within the different concepts.

In the semantic scale, pre-builts are ranked the highest be-
cause we hypothesize that rule developers prefer pre-builts
over other primitives. To illustrate, suppose the task is to
extract percentages and associated dates, and the target extrac-
tions include ‘50.5 percent in September 2004’ and ‘8 percent
during December 2012’. To capture ‘50.5 percent’, a rule
developer would prefer P: Percentage over other rules such
as P: Number L: ‘percent’ . Capturing the percentage and date
tokens with their respective pre-builts is more meaningful than
capturing them with primitives expressing their syntax, e.g.
token gap and regex. Moreover, developers build pre-builts
to capture semantic concepts. Hence, non-semantic, generic
primitives, i.e. token gap and regex, are ranked the lowest
on the semantic scale. Literals and dictionaries capture the
token’s exact string and hence lie in the middle of the scale.
Dictionaries are binned together with literals because they are
essentially sets of literals. There are also rankings amongst the
different types of concepts in the pre-built type. Pre-builts are
ranked based on generality and specificity. Generic pre-builts
such as P: CapitalWord are ranked lower than more specific
ones such as P: Organization .

On the other hand, if a token has no inherent meaning, then
rule developers least prefer pre-builts. The syntactic tokens
‘in’ and ‘during’ would most likely be described as token gaps
by the rule developer, since (1) there is no pre-built describing
the middle tokens, ‘in’ and ‘during’, and (2) the middle tokens
are not attached to any semantics and play a syntactic role in
the extractions. In general, generic, non-pre-built primitives
are preferred for syntactic tokens.

A token that appears across multiple positive examples but
not in any negative examples is also a semantic token even
if a pre-built cannot capture it. In general, it is preferable
to capture these tokens by more specialized primitives such
as literals instead of generic ones such as token gaps; this
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‘8’ ‘percent’
P: Percentage = 1.0
P: Integer = 0.8
P: Number = 0.6
L: ‘8’ = 0.4
R: [0-9]+ = 0.2

(a) The dashed lines point to can-
didate nodes for ‘8’.

‘8’ ‘percent’
P: Percentage = 1.0

L: ‘8’ = 0.4

R: [0-9]+ = 0.2
R: [0-9]+ = 0.2

R: [0-9]+ = 0.2
L: ‘percent’ = 0.4

L: ‘percent’ = 0.4

(b) The final tree generated from
the positive example, ‘8 percent’.

Figure 3. Tree generation from positive example, ‘8 percent’.

way, the commonality of the token across multiple examples
is captured in a more precise way within the rule.

SEER learns primitives that can capture multiple consecutive
tokens, e.g. P: Percentage captures the two consecutive
tokens: ‘8 percent’. The score of the primitive is independent
of the number of tokens it can capture.

SEER’S LEARNING ALGORITHM
At a high-level, the learning algorithm enumerates primitives
per token for each of the positive examples, and combines
them into sequences to form rules. Specifically, for each
positive example, possible rules are heuristically generated
and represented as tree structures. A tree is a representation
of all the possible rules. An example tree generated from the
positive example ‘8 percent’ is shown in Figure 3(b). Each
level of a tree corresponds to a token in the example, where
all primitives in that level capture that token. Each path of
ordered primitives from the root of the tree to one of its leaves
encodes a rule. Once a tree is generated for each positive
example, SEER intersects and refines the rules, which are then
suggested to the user. Next, we discuss each step in detail.

Tree Generation
Given an example, a naive algorithm would generate a tree
that encodes all possible rules capturing that example. For
example, all primitives covering the first token of the positive
example, i.e. ‘8’, are added as the root’s children (Figure
3(a)); each primitive capturing ‘8’ points to all the possible
primitives capturing the next token, ‘percent’. SEER avoids the
combinatorial blowup inherent in such a naive algorithm by
performing optimizations at each level of the tree, in a careful
manner that maintains the diversity and the validity of the
generated rules. Rule diversity ensures that the suggested rules
capture different sets of extractions. Specifically, a diverse set
of rules should not contain rules composed of mainly one type
of primitive; for instance, a non-diverse set of rules would
only contain pre-built primitives. Rule validity ensures that
the rule does not capture a negative example.

To maintain diversity, SEER keeps the highest scoring primi-
tives per type when adding candidate children primitives to a
node. To illustrate, suppose the algorithm is selecting primi-
tives for the root node, i.e. token ‘8’ in Figure 3(a). The high-
est scoring primitive amongst the pre-builts is P: Percentage ,
which is added to the tree, while the other pre-builts are dis-
carded. R: [0-9]+ and L: ‘8’ are kept in the tree, since there
is only one primitive per type. For tokens that are not in the
beginning or end of the example, a T : 0-1 is added (which
doesn’t apply to token ‘8’ or ‘percent’).

‘8’ ‘New’‘in’

L: ‘New’= 0.4

R: [A-Za-z]+ = 0.2

‘percent’ 
P: City = 1.0

T: 0-1= 0.2

P: CapitalWord = 0.6
P: Percentage = 1.0 L: ‘in’ = 0.4

‘City’‘York’

Figure 4. Tree generation for ‘8 percent in New York City’ assuming the
user provided a negative example, ‘50.5 percent in New Haven’. Dashed
lines point to candidate nodes.

To prevent capturing negative examples, SEER tests whether
adding a candidate primitive node to a path will lead to creating
a rule capturing a negative example. Intuitively, the likelihood
of such a partial path, Rpartial , capturing a negative example
depends on the current position in the tree and which parts
of the negative example can be captured by Rpartial . Suppose
the user wishes to extract percentages in New York City, and
she provides epos = ‘8 percent in New York City’ as a positive
example and eneg = ‘50.5 percent in New Haven’ as a negative
example. Suppose SEER is adding primitives to the token
‘New’ on the partial path P: Percentage L: ‘in’ (see Figure 4).
Only one of the two pre-builts P: City and P: CapitalWord
will be added, while the other primitive types will be added
to the tree in order to maintain diversity. P: City is ranked
highest by the default rankings, but picking it would create a
rule that also captures eneg.

Hence, the algorithm must check the following: (1) whether
the beginning part of eneg is captured by Rpartial and (2)
whether Rpartial would capture eneg despite what future prim-
itives may be added after. The second condition specifically
checks if the substrings in epos and eneg that haven’t been
matched by Rpartial are equal, denoted as Sneg and Spos, respec-
tively. If Sneg = Spos, then any rule formed after will capture
both the positive and negative example.

Given Rpartial is P: Percentage L: ‘in’ P: City , we check the
two conditions: 1) Rpartial captures the beginning part of eneg;
2) Sneg = Spos, since Rpartial captures epos and eneg. Since
all the conditions are satisfied, P: City is discarded from
the tree, and the algorithm tests the same two conditions for
the next highest scoring pre-built primitive, P: CapitalWord .
While the pre-built passes the first condition, it fails the sec-
ond condition, because Sneg =‘Haven’ and Spos = ‘York City’.
Hence, P: CapitalWord is added instead of P: City . By
adding P: CapitalWord instead of P: City , the algorithm cre-
ates more precise rules, whereas adding the latter pre-built
would only create rules capturing the negative example.

To summarize, when SEER adds primitives as children to an-
other primitive, it adds the highest scoring primitive per type
such that the path from the root to that primitive doesn’t cap-
ture negative examples partially (or fully). In this way, SEER
does not enumerate all possible rules, while maintaining the
diversity and validity of rules. The full algorithm is included
in the supplemental material.

Tree Intersection
Once SEER generates trees representing the possible rules
for each positive example, all trees are intersected with each
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other, resulting in the creation of a new tree, the intersection
tree (Algorithm 1). The intersection tree contains the rules
capturing all the positive examples of the intersected trees, e.g.
intersecting a tree capturing ‘8 percent’ with a one capturing
‘50.5 percent’ will result in a tree containing only the rules
capturing both examples (Figure 5). The goal of the intersec-
tion operation is to group "similar” examples together, in order
to both reduce the number of rules shown to the user, and to
create more semantically meaningful rules.

Two trees are intersected by simultaneously traversing the
trees in depth-first order and intersecting individual primi-
tives (Algorithm 1). Primitives intersect if they are iden-
tical. In other words, primitives intersect with themselves,
e.g. P: Percentage only intersects with itself. A dictionary
can intersect with another one containing the exact same dic-
tionary entry set, e.g. D: {up, grow} cannot intersect with
D: {down} . Similarly, L: ‘up’ can only intersect with itself,

and L: ‘up’ and L: ‘down’ do not intersect.

While the intersect operation combines identical primitives,
the merge operation creates dictionaries from literals and dic-
tionaries containing non-equal entries/string values e.g. merg-
ing L: ‘up’ and L: ‘rise’ results in D: {up, rise} or merging
L: ‘up’ and D: {rise, grow} results in D: {up, rise, grow} . By
allowing unequal literals and dictionaries to merge, SEER
doesn’t discard rules containing specific literals or dictionaries
that only apply to one example, thus maintaining the diver-
sity of the intersected rules, and moreover, it creates more
semantically meaningful rules by generalizing literals into
dictionaries. Moreover, without dictionary creation, rules
containing mere consecutive exact strings matching exactly
one example will be created but discarded during intersection.
Note, user-supplied dictionaries are not merged, since they are
considered as pre-builts.

If there are more than two trees to intersect, subsequent trees
are intersected with the intersected tree (Algorithm 2). If the
intersection of two trees does not contain any rules, SEER
splits the tree’s examples, resulting in a disjunction of exam-
ples and multiple intersected trees. Suppose e1 = ‘8 percent
up’, e2 = ‘50.5 percent up’, and e3 = ‘increases 30 percent’.
Since rules from e1 and e2 don’t intersect (although they may
merge) with any of the rules in e3, the algorithm will return two
suggestion sets, one for each positive example subset, where
the first positive example subset is {e1,e2} and the second
subset is {e3}.
Note that SEER disjuncts on null intersections even if merging
the trees does not result in null. Intersecting trees of e1 =‘8
percent’ and e2 =‘in 2008’ results in an empty intersection
tree, or two separate suggestion sets, Se1 and Se2 . While merg-
ing rules from e1 and e2 results in a suggestion set containing
one rule, D: {8, in} D: {percent, 2008} , it is not as diverse as
Se1 and Se2 . By performing a disjunction on null intersected
trees, SEER avoids over-merging and creating non-diverse sug-
gestion sets dominated by meaningless dictionary primitives.

Trimming Rules for the Final Suggestions
After intersecting the rules, there may be too many rules in
each suggestion set to present to the user. For each sugges-

Algorithm 1: SEER’s Intersection & Merge Algorithm
Input:

P1, P2: primitives from the input trees to intersect T1 and T2; The tree
variables T1 and T2 point to the root primitives.
Pi: primitive in the resulting intersect tree Ti

Output:
Pi: a primitive node due to an intersection or null

Function Call:
Traverse(T1, T2, null)

Function Traverse (P1, P2, Pi)
if (IsTokenGap(P1) and not IsTokenGap(P2)) or (not IsTokenGap(P1)

and IsTokenGap(P2)) then
Let PT G be the token gap and P be the non-token gap
P′i := Primitive(PT G)
Pi.children := Pi.children∪{P′i }
foreach c ∈ PT G.children do

Traverse(c,P,P′i )

else if IsIntersects(P1,P2) or IsMergeable(P1,P2) then
P′i := IntersectMergePrimitives(P1,P2)
Pi.children := Pi.children∪{P′i }
foreach c1,c2 : c1 ∈ P1.children,c2 ∈ P2.children do

Traverse(c1,c2,P′i )

/* Eliminate non-intersectable paths */
if Pi.children = /0 and not(areBothLeaves(P1, P2)) then

Remove(Pi)

return Pi

‘8’, ‘50’ ‘percent’, ‘percent’‘.’ ‘5’

T: 0-2 = 0.2

D: {8, 50} = 0.4
P: Percentage = 1.0

R: [0-9]+ = 0.2

T: 0-2 = 0.2 R: [A-Za-z]+ = 0.2

R: [A-Za-z]+ = 0.2

L: ‘percent’ = 0.4

L: ‘percent’ = 0.4

Figure 5. Intersected Tree for ‘8 percent’ and ‘50.5 percent’.

tion set, its rules are trimmed, in such a way that maintains
diversity. Trimming involves two steps: (1) grouping rules of
the same primitive composition, a process called classifying,
and (2) selecting the highest scoring rule from each group,
where the score of a rule is the average of all its primitive
scores. The average is simple and efficient, and it factors the
primitive scores, which partially captures its complexity. The
rule, R: [0-9]+ T : 0-2 L: ‘percent’ , has a classification group
of {Regex, Token Gap, Literal}. Rules that are composed of
exactly these three primitive types will fall under the same
classification group. Classifying rules from the intersected tree
in Figure 5 will not trim any rules, since each rule belongs in
its own classification group. Afterwards, the rules are ranked
by their scores in descending order and presented to the user.

Complexity Analysis
The complexity of SEER’s learning algorithm depends on the
number of positive examples, e, negative examples, n, and
tokens per example, t. The tree generated for each positive
example is of size at most 4t . The tree has at most t levels for
each token in the example and a maximum branching factor
of four for each of the possible primitives: pre-builts, literals,
token gaps and regular expressions. Each positive example
generates a tree. The negative examples only limit the number
of primitives at each node of the tree. Thus, negative exam-
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Algorithm 2: Forming Suggestion Sets with Intersection
Definitions:

A suggestion set is s = (Ps,Rs), where Ps ⊂ P, the set of all the positive
examples, and Rs contains rules capturing all examples in Ps

Input:
T : set of trees to intersect

Output:
I: a list of suggestion sets

Function Intersect(T )
I := []
foreach t ∈ T , t learned from example e do

if I = /0 then I := I∪{({e}, t)}
else

IsAdded := false
foreach s = (Ps,Ti) ∈ I do

if IsIntersectable(Ti, t) then
s := (Ps ∪{e}, Traverse(Ti, t, null))
IsAdded := true
break

/* Disjunct when t does not intersect */
if not IsAdded then I := I∪{({e}, t)}

return I

ples contribute O(e4tn) to the runtime. The intersection and
merging algorithm also produces an intersected tree of size at
most 4t . Since each example-generated tree is intersected once
with the intersected tree of a suggestion set and in the worst-
case none of the example trees intersect leading to e possible
suggestion sets, SEER’s runtime complexity is O(e24t + e4tn).

While the worst-case runtime is exponential in nature, the
goal of our heuristics is less on runtime optimization but more
on suggesting a small set of rules that are diverse. While
optimization can be explored, it is not within the scope of
the paper, since most extractions are less than ten tokens.
From experience with VINERy, users do not create long rules
(e.g., with length greater than 10) because they are difficult
to maintain. Instead, users build rules capturing lower-level
sub-concepts, save them as pre-builts, and reuse them in rules
for higher-level concepts.

FILTERING RULES WITH REFINEMENTS
Given the suggested rules, it may still be time-consuming for
the user to analyze each one. Therefore, SEER further assists
the user by analyzing the results of all suggested rules and
selecting a small set of extractions that help disambiguate the
rules (see Algorithm 3). SEER allows the user to filter rules
by accepting or rejecting these extractions, which are called
refinements. A refinement, x, is an extraction captured by
a subset of the suggested rules, referred to as covering rule
set, or covering rules in short. A user can accept or reject a
refinement, and in turn its covering rules are kept or filtered
(not shown to the user). If the user rejects ‘8 percent’, then its
covering rules will not be shown in the suggestion list.

Note that a rule may appear in multiple covering rule sets even
if the sets are different from each other, e.g. it is possible
that refinements x1 and x2 both contain the rule R1 in their
covering rule sets. Hence, conflicting selections may arise
where the user rejects a refinement that is covered by a rule

Algorithm 3: Refinement Computation
Definitions:
The cover rules of an extraction, x, are the rules that can capture x

Global Variables:
LIMIT : the max number of refinements to show

Input:
S = (Ps,Rs): a suggestion set, where each rule r has its own set of
extractions Xr

Output:
F , the set of refinements

Function GetRefinements (S)
F := []
C := Xr1 ∪Xr2 ∪ ...∪Xrn s.t. ri ∈ Rs,1≤ i≤ |Rs|
foreach xc ∈C do

AddRe f inement = true
foreach x f ∈ F do

if CoverRules(xc) =CoverRules(x f ) then
AddRe f inement = false

break
if AddRe f inement then F := F ∪{x}
if |F |> LIMIT then break

return F

that was accepted under a different refinement (or vice versa).
In order to prevent such a state, SEER disables selections for
refinements that a user has not yet accepted or rejected. The
selection for a refinement is disabled if all of its covering rules
have been accepted or rejected under other refinements.

To illustrate, assume a suggestion set of rules R1, R2, R3, and
R4, and let its refinements and their covering rules be x1: {R1,
R2} and x2: {R2}. If the user rejects x1, then the non-rejected
rules are R3 and R4 and the rejected rules are R1 and R2. SEER
disables x2 if at least one of the following conditions is true:

1. If all its covering rules have been rejected by user selections,
or if the intersection between the refinement’s covering rules
and the non-rejected rules is null. For x2, its covering rules
have been rejected under x1 ({R2}∩{R3,R4}= {}).

2. If all of its covering rules are accepted based on user selec-
tions, or if the difference between the non-rejected rules and
the refinement’s covering rules is null. For x2, none of its
covering rules have been accepted ({R3,R4}−{R2}= {}).

Since at least one of the conditions passed, x2 is disabled.
Hence, if the user rejects x1, then the user selection will be
disabled (grayed out) for x2.

EVALUATION
We conducted a comparative user study of rule suggestion
with SEER against direct rule specification with VINERy (Vi-
sual Integrated Development Environment for Information
Extraction) [20], a commercially available drag-and-drop in-
terface for specifying VAQL extraction rules. For each user,
we observed completion-time, precision and recall for differ-
ent extraction tasks completed on either SEER or VINERy.
We hypothesize that, with the help of SEER’s example-driven
rule synthesis and refinement, users complete text extraction
tasks more quickly with better accuracy and coverage than
with only manual rule creation.
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Participants and Method
We recruited 13 participants. These subjects are familiar with
basic programming: they were undergraduate students who
have taken or were taking an ‘Introduction to Computer Sci-
ence’ course. This is to ensure that they could use VINERy
and build regexes. These subjects have neither used VINERy
nor SEER before.

We exposed each participant to both tools, allotting one-hour
per tool. For each tool, we provided a 30-minute training ses-
sion. We randomized the presentation of tools across subjects;
7 subjects used SEER first and 6 used VINERy first. The same
pre-builts were available on SEER and VINERy.

In the beginning of each training session, the participant was
presented with a 5 minute tutorial video. The tutorial video
for VINERy explained how to create extractions rules and the
tutorial video for SEER explained how to provide examples
to SEER and how to interpret the rules suggested by SEER.
After presenting the video, the user practiced completing text
extraction tasks on a mock dataset. The mock tasks for VIN-
ERy introduced each of the basic primitives and how to create
sequence rules out of the primitives. The mock tasks for SEER
trained the users how to highlight examples, understand the
suggested rules, use the refinements to filter rules and choose
the correct one.

After the training session for a tool, the participant completed 3
tasks given in ascending task complexity, and we limited each
task to 10 minutes. Task instructions included descriptions
of sample extractions and extraction variations. The tasks
were designed such that they were feasible for novice users to
complete in 10 minutes. We randomized the choice of dataset
for each feature across subjects in order to minimize learning
effect. The two datasets were IBM press releases and FBI
press releases.

Task 1: Users either extracted (a) all currency amounts from
the IBM data set, or (b) all percentages from the FBI data set.
The complexity of this easy task is a single extraction rule
with one primitive.

Task 2: Users either extracted (a) all cash flow and OEM
(Original Equipment Manufacturer) revenues, or (b) all per-
centage increases or decreases in offences. The complexity
of this moderate task is a single extraction rule with multiple
primitives.

Task 3: Users either extracted (a) all yearly quarter phrases, or
(b) all population ranges. The complexity of this hard task is
a disjunction of two rules with multiple primitives each.

Table 1 lists the expected extraction rules and sample extrac-
tions for each of the tasks above. The tasks are represen-
tative of common information extraction tasks, since users
performed all typical rule development steps: find extractions
in the dataset, test rules, and verify results.

After the participant finished the experiment, we asked them to
finish a questionnaire, in order to understand their experience
using the tools and evaluate our design choices including the
preference ordering of primitives.

Figure 6. Time for task completion per participant. Black bars indicate
mean times. The mean F1, precision, and recall are also listed.

Results
We collected the duration of task completion and measured
the participant’s rules using the following standard metrics:
precision =

tp
tp+ fp

(also known as accuracy), recall = tp
tp+ fn

(also known as coverage), and F1 = 2 · precision·recall
precision+recall , where

tp denotes the number of true positives, fp denotes the number
of false positives and fn denotes the number of false negatives.
See Figure 6.

We evaluate the results using the repeated measures ANOVA
approach. Mauchly’s test indicates that the preconditions
(sphericity) for the ANOVA repeated measures have been met.
We found a significant main effect of tool (F1,41 = 19.452, p <
0.01) for task completion times. For task completion times on
Task 1 and Task 3, we found a significant main effect of tool
(F1,13 = 12.180, p = 0.004; F1,13 = 6.043, p = 0.029), but no
significant main effect of tool was found for Task 2. In Figure
6, notice that for all task complexity levels, the mean time
to complete a task with SEER is lower than the mean time to
complete the same task with VINERy.

We also performed a repeated-measures ANOVA of F1 scores
with tool as an independent factor and found a significant
main effect of tool (F1,40 = 9.367, p = 0.004). For F1 scores
on Task 3, we found a significant main effect of tool (F1,13 =
5.195, p= 0.04), but no significant effects were found for Task
1 and Task 2. In Figure 6, we notice that for all task complexity
levels, the mean F1 scores for tasks completed with SEER are
higher than the mean F1 scores for the same tasks completed
with VINERy.

User’s programming experience (measured by asking how
long a user has been programming) did not impact perfor-
mance (duration and F1 scores); no significant interaction
effects were observed. In Figure 6, although it appears that a
cluster of users spent a considerable amount of time in VIN-
ERy across task complexities, no correlations were found
between the VINERy durations and programming experience
or regular expression familiarity. The duration varied across
complexity; for instance, some users took a long time on the
first task and spent less time on the subsequent tasks.

We also recorded the number of times users utilized the refine-
ment filters, and found that all users, except for one, used it
regardless of task complexity. Users on average answered 2
refinement questions for easy tasks, 3 refinement questions
for medium, and 4 for hard tasks, before converging to the
desired rule. Only 1 participant did not use the refinements
across all task complexities and went through 6 iterations in
total (the most of any user) before selecting the desired rule,
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# Size Complexity Dataset Expected Extraction Rule Example Extractions

1 100 Easy IBM P: CurrencyAmount $6 billion
1 100 Easy FBI P: Percentage 5.0 percent
2 30 Moderate IBM D: {OEM revenue, cash flow} T : 0-1 P: CurrencyAmount cash flow was $4 billion
2 30 Moderate FBI L: ‘offenses’ T : 0-2 P: Percentage offenses decreased 5 percent
3 30 Hard IBM D: {first, second, third, fourth} T : 0-1 L: ‘quarter’ T : 0-1

P: Integer OR
fourth-quarter 2005

P: Integer D: {first, second, third, fourth} T : 0-1 L: ‘quarter’ 2007 first quarter
3 30 Hard FBI P: Integer L: ‘to’ P: Integer T : 0-1 L: ‘population’ OR 10 to 1,000 in population

L: ‘populations’ T : 0-1 P: Integer T : 0-1 P: Integer populations from 50 to 100

Table 1. Text Extraction Tasks. Size refers to the number extractions in the task.

when on average the other users did 4 iterations in total. The
participant simply wanted to inspect each rule instead of filter
by refinements.

Discussion
Users were most effective with SEER when they constructed
simple extraction rules or complex disjunctions of multiple
extraction rules. Users completed the simplest task more
quickly in SEER than in VINERy, because in VINERy, most
participants spent their time recreating sequence rules that
did the equivalent of an existing pre-built they weren’t aware
of. Though after a few minutes of dragging and dropping
primitives to create sequence rules, some of the participants
noticed a pre-built that would complete the task. Hence, in
Task 1 SEER had an impact duration-wise.

Users completed tasks requiring complex disjunctions of mul-
tiple rules significantly more quickly, accurately, and precisely
with SEER than with VINERy. As the task required more vari-
ations, the participants took more time to create multiple rules
that covered each variation and some even missed covering
the details in the variations that SEER would have otherwise
picked up on. For instance, in Task 3 of the IBM dataset,
some of the target extractions have dashes in between the
year’s quarter and the literal ‘quarter’, e.g. ‘Fourth-quarter’.
Yet, some participants didn’t include a token gap that would
capture that variation. With SEER, participants simply made
sure to highlight all the variations, which was easier and less
error-prone than creating rules and simultaneously keeping
track of those variations.

Qualitative Evaluation
After the participants finished all the tasks on both tools, we
asked them to complete a questionnaire evaluating the ex-
periences in both tools, asking them on their preference of
primitives and for feedback on the interfaces.

SEER’s Ranking Primitives
We hypothesized that users prefer some primitives over others
depending on the example token type; this assumption drove
the design of SEER’s rule scoring. We asked the users, “If
you can correctly extract the required text with all five primi-
tives, pre-builts, dictionaries, literals, token gaps and regular
expressions, which primitives would you prefer to use? Rank
the primitives by your preference.” By asking users to order
primitives by their preference we affirmed our design choice.
Figure 7 shows the ranking distributions and means.

Pre-built Literal Dictionary Token Gap Regex
1 5 1 5 1 5 1 5 1 5

1.4 2.1 2.6 2.9 3.6Mean rank

Figure 7. Distribution of participants’ primitive rankings. The missing
dots are due to missing survey responses.

Users ranked pre-builts the highest, literals the second highest,
dictionaries the third, and regexes and token gaps the lowest,
which matched closely with SEER’s hypothesized default rank-
ing of primitives. Similar to SEER’s rankings, user’s regex
ranking contrasted the pre-built ranking, since pre-builts de-
scribe semantic features and regex’s capture syntactic features
devoid of meaning. One user said, “Regexes are the most
expressive. Pre-builts are the fastest/most powerful.” Users
ranked literals after pre-builts, because, although not as pow-
erful as pre-builts, it simulates searching and closely matches
target extractions.

Thorough IE with SEER
SEER reinforces a more thorough approach to information
extraction: (1) users inspected the dataset for actual instances
of the target extractions and (2) users verified the extractions.
In the following sections, we discuss these two aspects in
detail.

Target Extraction Inspection. In the form of a Likert scale
question from 1 (many examples) to 5 (few examples), we
asked participants: (1) whether they felt they ought to provide
many or few examples for SEER to suggest good rules and
(2) whether they felt they actually provided too many or too
few examples. In response to the two questions, users felt
that they need not provide many examples (µ = 3.93), but felt
that they ended up providing more examples than necessary
(µ = 3.43). Users explained that the number of examples
they provided largely “depend[s] on the variations”. In Figure
8, the distribution of the total number of positive examples
provided are shown. The majority of the users provided 3 to 4
positive examples per task.

Similarly, in VINERy, we asked users (1) how many exam-
ples (including actual instances in the dataset in addition to
the sample extractions provided in the task instructions) were
necessary to examine to construct a rule, and (2) how many ex-
amples they felt they actually examined to create a rule. With
VINERy, unlike SEER, users did not think it was necessary to
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Total Number of Positive Examples

Figure 8. Distribution of the total number of positive examples.

inspect any actual extraction instances aside from the sample
extractions given to them from the task description (µ = 3.36).
Consequently, VINERy users felt that they did not inspect
any dataset extraction instances or felt the need to search for
extra variations from the dataset (µ = 3.38); one participant
said, “I didn’t scroll through the document for other possible
examples. I just took the examples I was presented [in the task
description].” Another said, “I never felt like I examined too
many examples,” and another said, “Just about right [number
of examples].” The number of examples to create a rule was ir-
relevant to users because they knew instantly which primitives
they wanted to build their rule, “Often, I knew straight away
what I wanted, [for] example an integer number or date.”

Extraction Verification. Participants had different methods
of verifying extractions, ranging from a methodical search of
known constant terms to mere glances at the extractions. One
participant said, he checked “only the first few instances to see
if the sequence satisfies my needs.” Another one expressed a
similar sentiment saying, “No, I checked for few [extractions]
and I knew it would work.” Others said they used the search
functionality just to be sure, “I sometimes use the search
functionality to make sure.”

To evaluate extraction verification on both tools, we asked
users how much they felt they verified and compared partici-
pants’ answers with the actual percentage of extractions they
analyzed. Specifically, we asked participants if they “searched
through the whole dataset to make sure the extraction results
contained all instances required by the text extraction task” on
a Likert scale of 1 (strongly disagree) to 5 (strongly agree).
The actual percentage of analyzed extractions was calculated
by counting the number of extractions seen by the user.

We found that while the reported amount of extractions users
felt they checked in VINERy (µ = 3.21) was more than in
SEER (µ = 3.00), users in SEER actually checked, on average,
23% more extractions than users in VINERy. In both the easy
and medium tasks, users were more likely to check their ex-
tractions in SEER than in VINERy (17% and 43% more actual
extractions analyzed in easy and medium tasks, respectively).
Yet, as the number of variations increased in the required task,
users felt the need to verify their extractions in both tools;
users in SEER and in VINERy checked, on average, 60% of
the extractions. Note that while the number of extractions per
task complexity differs, the number of extractions across task
complexity were the same.

Participants reported that they inspected more extractions in
VINERy than in SEER, yet the actual amount of extractions
checked were less in VINERy than in SEER (except for the
hard task). There was a tendency for VINERy users to think

they analyzed the extractions. For instance, one VINERy user
said, “I wanted to make sure that my rule was correct so I
double checked a lot,” yet his precision value did not reach
100 percent (96%). VINERy users had confidence in their
rules, including incomplete ones, and hence, were more likely
to feel as if they had actually inspected more extractions in
VINERy than in SEER.

Creating Rules in VINERy
There are two major steps to a user’s thought process during
rule creation that SEER’s learning algorithm emulates: (1)
Sample target extractions are mentally tokenized and pieced
together to create an initial rule, (2) Rules are edited in itera-
tions to generalize across variations.

Initial Rule. In the questionnaire, we asked VINERy users
on their thought process when creating rules. When working
with VINERy, users mainly applied the same steps to creating
an initial rule: (1) Mentally breakdown the examples into
individual tokens, (2) Figure out which primitives to use, and
(3) Combine the primitives into a pattern. One participant said,
“[I] Look at examples, separate each word, and put it together,”
and another said, “I broke down an example into parts and
added components.”

When figuring out which primitive to use, users often picked
the most meaningful primitive and the one closest to the target
extraction. Users created a literal first in 49% of the tasks, a
pre-built first in 38% of the tasks, and a dictionary first in 13%
of the tasks. One user said, “Add literal, add dictionary, merge
together.” and another said, “I chose the parts that were easiest
to use.” Majority of the users clicked on the literal primitive
first since it is only an exact string match and it was the easiest
primitive to match to the target extraction.

Iterations and Variations. During rule construction, users
think in iterations. One user said, “[I] identify patterns, create
rules matching pattern, run rules, spot irregularities, debug.”
Another one said, “[I] look at target words, identify the con-
stant words, identify variables, construct rule, try it out, check
and modify.” If the first run of the rule was not sufficient, users
iteratively modified it until the rule was satisfactory. On the
other hand, some users tried to create the rule that included
all the variations on the first try. One user responded “[I] try
to think everything through while creating the rules, because
once they’re created, changing [them] would be troublesome.”

We also asked users to rate on a Likert scale from 1 (strongly
disagree) to 5 (strongly agree) whether they deleted the rule
instead of fixing the already-created rule when it did not cap-
ture an example from the documents . Again, we found users
almost always iteratively fixed their rule (µ = 1.92), but in
some cases, “I usually tried to fix it, but if I hit a deadend, I
delete all and start again.”

RELATED WORK
Previous works on data extraction over text documents fall
along a spectrum of methods: on one end, in the rule-based
approach, developers manually create data extraction scripts
or rules; on the other end, in Machine Learning (ML)-based
approaches, systems learn complex mathematical models to
extract the data. See Chang et al. [8] for a survey.
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Recent research in IE has gravitated towards ML techniques.
Example statistical models used for IE include Markov Logic
Networks (MLN), Hidden Markov Models (HMM), Condi-
tional Random Fields (CRF) [23, 22, 18]. However, since
ML techniques need large training datasets and use complex,
opaque models occasionally returning unexplainable results,
industrial systems opt for models that employ simple, main-
tainable rules [9]. Rule-based systems depend on domain ex-
perts to define logical rules to capture possible variations in tar-
get extractions, which is a labor-intensive and time-consuming
process. SEER synthesizes rules, taking advantage of the easy-
to-understand model without requiring large training datasets.
As such, SEER falls under the research agenda proposed in [9]
of utilizing ML techniques for learning using a standard rule
language as target model, in lieu of opaque statistical models.

Most prior work on IE rule synthesis is supervised [7, 10,
19], requiring the user to fully label a large set of documents.
Whisk [28] is a semi-supervised rule synthesis system where
only partially labeled data is required. Unlike Whisk, which
works well only when hundreds of examples are provided,
SEER works with only a small number of examples. Also
related are systems for inducing regular expressions [25, 4,
5, 21]. Regular expression learners are limited to syntactic
features of text; SEER capitalizes on semantic features of the
text whenever possible and beneficial to data extraction.

A number of IE techniques (both rule-based and ML-based)
take advantage of syntactic information, especially depen-
dency grammars and trees [2, 13, 6, 11, 26]. Dependency trees
contain part-of-speech tags and lexical values of the sentence’s
words. PropMiner [2] helps users unfamiliar with deep syntac-
tic information to define rules consisting of SELECT, FROM,
and WHERE clauses that query a sentence’s dependency tree.
PropMiner generates a very specific rule from a single exam-
ple, which users must manually edit in order to generalize it to
other target extractions, whereas SEER automatically outputs
rules that generalize well. Extending SEER to consider rules
that leverage syntactic parsing information is an interesting
direction for future work.

In DeepDive [23], a knowledge base construction system
based on Markov Logic Networks (MLNs), users write queries
extracting entities and their relations. Such extractions are
used to populate a data structure called a factor graph that
facilitates statistical inference of other candidate extractions to
be added to the knowledge base. MindTagger [27], a tool that
was built on top of DeepDive, presents candidate extractions
to the user in a way that allows for easy error analysis. In
DeepDive and MindTagger, wrong extractions are tolerated as
each one is weighted by confidence. SEER uses heuristics to
remove rules that extract negative examples.

Heer et al. [12] describe a framework for data transforma-
tion called Predictive Interaction in which users iteratively
highlight features of interest in the data transformation, and
in turn the system suggests the next possible steps. Wran-
gler [15], which follows the Predictive Interaction framework,
suggests relevant transformations from current user interac-
tions on structured tabular data. In Wrangler, users can build a
data cleaning script by directly interacting with the data, e.g.

highlighting text, etc. SEER follows this idea closely; users
highlight extraction texts and SEER suggests rules.

SEER’s mixed-initiative interface, which combines example-
driven synthesis and direct manipulation of extraction rules, is
similar to Wrangler’s and DataPlay’s philosophy that applies
mixed-initiative interfaces to other data problems: transfor-
mation and querying respectively [15, 1, 14]. SEER is also
similar to other human-in-the-loop systems, such as Model-
Tracker [3], which visualizes ML models to allow developers
to easily catch common ML mistakes (e.g. mislabeled data
or feature deficiencies), and Kristjansson’s [17] work, an in-
teractive IE framework for form-filling where system detects
low-confidence extractions for the user. While ModelTracker
deals with ML models and Kristjansson’s work focuses on
assisted form-filling, SEER deals with the rule-based method
and reduces the time to create and debug IE rules.

FlashExtract [19] is most similar to SEER. It allows users to
highlight text they wish to extract and synthesizes a fixed data
extraction script. SEER differs from FlashExtract as it only
relies on the pattern of the extraction and not on the content
surrounding the extraction (e.g. preceding ‘:’ or on newline).
This makes SEER work just as well for both structured docu-
ments, e.g. CSVs, logs, etc., and unstructured documents, e.g.
reviews, press statements, etc. While some of the mentioned
systems have extractors, including data transformation tools
such as Wrangler and OpenRefine [24], they do not reveal
how they synthesize extraction rules and like FlashExtract
they expect semi-structured files like logs or CSVs.

CONCLUSION AND FUTURE WORKS
In this work, we presented SEER, a system that learns IE rules
from a small set of user examples. We evaluated SEER against
VINERy, a commercial tool that allows users to manually
create rules in the same language as SEER and demonstrated
that users completed extraction tasks in less time and with
fewer errors with SEER. We demonstrated that the scoring
and ranking of primitives in SEER’s rule learning algorithm
closely matches how rule developers select primitives when
constructing rules. We combined rule learning with refine-
ments to help users differentiate between rules and quickly
select the appropriate one.

While this paper focused on an IE workflow centered around
user-specified examples, SEER can improve on a number of
aspects, including its synthesizer’s efficiency: currently, SEER
does not learn from previous iterations, i.e. when a user clicks
on the learn button, it simply reruns the learning algorithm.
We plan to explore how to efficiently maintain and exploit
what was learned from previous iterations, as well as optimize
the run-time performance of the learning algorithm to ensure
interactivity even with examples containing several tokens.
SEER is currently limited to learning sequences of primitives:
we plan to extend its learning algorithm to learn rule predicates,
other regular-expression quantifiers and modifiers.
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