
Gumshoe Quality Toolkit:
Administering Programmable Search

Zhuowei Bao
∗

Benny Kimelfeld
†

Yunyao Li
†

Sriram Raghavan
‡

Huahai Yang
†

zhuowei@cis.upenn.edu {kimelfeld,yunyaoli}@us.ibm.com sriramraghavan@in.ibm.com hyang@us.ibm.com

ABSTRACT
Enterprise search is challenging due to various reasons, no-
tably the dynamic terminology and domain structure that
are specific to the enterprise, combined with the fact that
search deployments are typically managed by domain ex-
perts who are not necessarily search experts. To address
that, it has been proposed to design search architectures
that feature two principles: comprehensibility of the rank-
ing mechanism and customizability of the search engine by
means of intuitive runtime rules. The proposed demonstra-
tion operates on top of an engine implementation based
on this search philosophy, and provides an administrator
toolkit to realize the two principles. In particular, the toolkit
provides a complete visualization of the provenance (hence
ranking) of search results, embeds an editor for program-
ming runtime rules, facilitates the investigation of (the cause
of) missing or low-ranked desired results, and provides sug-
gestions of rewrite rules to handle such results.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval

General Terms: Human Factors, Management

1. BACKGROUND
While search engines are very successful in retrieval on

the Web, enterprise search remains an important living chal-
lenge with various sources of difficulties highlighted by the
retrieval community [2,4,6,7]. Among those are the sparse-
ness of link structure and anchor text, low economic in-
centive of content owners to promote easy search access,
and a strong presence of dynamic terminology and jargon
that are specific to the domain. Another important diffi-
culty is the fact that enterprise search deployments are typ-
ically managed by administrators who are domain experts
but not search experts—although they well understand the
specific content and user needs in the domain, translating
that knowledge into tuning the underlying retrieval model
is nontrivial, sometimes practically impossible.

∗
University of Pennsylvania, Philadelphia, PA, USA. Work done

while at IBM Research – Almaden.†IBM Research – Almaden, San Jose, CA, USA
‡
IBM India Research Lab, Bangalore, India

Copyright is held by the author/owner(s).
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
ACM 978-1-4503-1156-4/12/10.

of queries
Set Q

results
Final

Query

Ranked

q

resultsFront end
Back end

Rewrite rules

Ranking rules Grouping rules

Field
indices

Result aggregation

Query rewriting

Figure 1: Search-engine architecture

Facing those challenges, research and industrial groups [5,
10] advocate the design of programmable search—a search
paradigm that features two principles: comprehensibility (i.e.,
transparent ranking mechanisms), and customizability by in-
tuitive runtime rules (to program domain knowledge). This
demonstration is based on such a system, namely Gumshoe,1

and is aimed to provide search administrators with the proper
tooling to fully realize the two principles.

Gumshoe Search Architecture
We now outline the search architecture underlying the toolkit.
Figure 1 depicts the conceptual runtime flow.

Categories, metadata fields and matchings. At back-
end analysis, each document is associated with a category
and multiple metadata fields. The category is semantically
meaningful in the domain; examples include employee di-
rectories, software pages and wiki pages. The metadata
fields are extracted to leverage structural Web-page infor-
mation (e.g., HTML title, actual title, headers, HTML meta
fields and URL components) in retrieval, similarly to exist-
ing search systems [8, 11]. For each type of metadata we
store in a (conceptually) separate index, called field index,
the corresponding field values along with their container doc-
uments. Thus, the search index is a collection of field indices,
where each document belongs to one or more of them. Given
a search query and a field value, there are different types of
matchings with various strengths; examples are“coverage”—
exact matching up to normalization, “n-gram”—the query is
an n-gram of the field, and “person name”—variants of the
same person name (e.g., the first name is replaced by its first
letter). Other actions taken at backend analysis (e.g., global
analysis [11]) are not discussed here.

Top results and ranking vectors. To allow a search ad-
ministrator to phrase simple and intuitive rules, the engine

1This engine is deployed in IBM intranet search [10]. More details
are in the IBM page of Infrastructure for Intelligent Information
Systems http://www.almaden.ibm.com/cs/disciplines/iiis.



uses the notion of top results as follows. Various combina-
tions of metadata fields and matching types (implying strong
matching) are specified in advance. For a given query, each
document obtained by one of the specified combinations is
marked as a top result. All top results are ranked higher
than all non-top results. Among the top results, ranking
is determined by ranking vectors. Specifically, the engine is
configured with a collection of document features such as the
number of top matchings for the query, the document last
update time and URL length, and so on. Two top matches
are ranked by comparing their ranking vectors in a lexico-
graphic manner. But this order can be overridden by rules.

Rewrite Rules. Rewrite rules program the query rewrit-
ing component of Figure 1, and are in the spirit of the query-
template rules [1,5,9]. Rather than a precise specification of
the rule language, we give examples in a simplified language.
The following rule fires when the query is of the form x info,
where x belongs to a dictionary of products; it introduces a
new query with the term info removed.

EQUALS: x[in PRODUCT] info → x

The next rule, involving a regular expression, fires when the
query contains the word lotus followed by either presenta-
tions or spreadsheets; it introduces a new query with the two
words replaced by lotus symphony.

lotus x(presentations|spreadsheets) → +lotus symphony

The plus sign assigns preference to the new query over the
original query, meaning that among the top results, the ones
that match the new query are ranked higher than those that
match the old one. These are the only rules we mention here,
so we use q1 → q2 as a shorthand notation of x(q1) → +q2.

Other runtime rules. Runtime rules are in the form of
query pattern → action. Two additional types of rules are
grouping rules and ranking rules. In a grouping rule, results
of specified categories are clustered together. In a ranking
rule, results of specified categories are clustered together and
ranked higher than results of other categories.

2. TOOLKIT DESCRIPTION
The demonstrated toolkit is aimed for use by search ad-

ministrators in the enterprise, with the goal of realizing the
two principles of a programmable search engine: compre-
hensibility and customizability. The toolkit operates along-
side the underlying search server and communicates with
it (through a REST API) to realize its functionality. A
session begins with a simple (typical) search interface: the
administrator poses a keyword-search query, and in return
the toolkit displays pages of ranked results as obtained from
the search server. Beyond that, the functions of the toolkit
are classified into three categories that we explain next.

2.1 Provenance Tracking
The provenance of a result entails the reformulations, field

indices, ranking-vector values, and the rules that were in-
volved in the process of retrieving the result by the search
engine. The toolkit visually presents the provenance of se-
lected search results through several display components.
For that, attached to each search result is a “Track” check
button that, when turned on, activates the provenance dis-
play for the result. In Figure 2 the search query is “employee
skills,” and the provenance of four results is displayed.

Trellis graph. The trellis graph shows how a result is ob-
tained from reformulations and field indices, and it has four
vertical layers. The first layer contains the query reformu-
lations obtained by invoking the rewrite rules (at runtime).
In Figure 2, the rule skills → expertise fired, so we get two
reformulations: employee skills and employee expertise. The
second layer contains the field indices in which the consid-
ered results were found. A reformulation is connected by
an edge to a field index if the index contains a match for
that reformulation. In Figure 2, for example, the index “Ti-
tle Content” contains employee expertise while “Title Name”
contains employee skills. It may be the case that the number
of such indices is too large to display, and then the indices of
lower quality will be blurred to avoid overwhelming the ad-
ministrator (e.g., “H1s” of Figure 2). The third layer in the
trellis graph contains the actual relevant entries in the field
indices, represented by snippets. Each relevant entry has
an incoming edge from each containing index; that edge is
labeled with the type of match identified (i.e., n-gram or cov-
erage). The last layer contains the result themselves, each
with incoming edges from their fields (in the third layer).
Figure volumes are used for visualizing importance: larger
circles (e.g., that of employee expertise) represent reformula-
tion that are ranked higher, larger ovals (e.g., that of “Ti-
tle Name”) represent higher-quality fields, and thicker edges
(e.g., that of “coverage”) represent higher-quality matches.

Ranking vector and rules. In addition to the trellis
graph, the toolkit visualizes the ranking vector and specifies
the fired rules (see the left pane in Figure 2). The layout of
the ranking vector is by a column graph that allows for easy
comparison among results. When hovering over a specific
result, the fired rules relevant to (i.e., needed to fire in order
to obtain) that result are highlighted.

Result investigation. An important functionality of the
toolkit is the ability to paste a new URL and investigate
that URL w.r.t. the existing (top) results. This functional-
ity is crucial for understanding why a specific desired result
is ranked as it is compared to the top results. The adminis-
trator pastes the URL of the desired result in the “Desired
URL” field (see the top of Figure 2) and, upon clicking on
“Investigate” the desired result is tracked alongside the other
results. For illustration, the darker orange result in Figure 2
(denoted “URL(#10+)” to specify that it is ranked lower
than the tenth result) is an investigated URL.

2.2 Rule Editing
A rule editor embedded in the toolkit allows the admin-

istrator to introduce new runtime rules and edit/delete ex-
isting ones. Once the rules are saved, the editor signals the
search server (through the REST command) to reload the
rule files, thereby avoiding the need to manually restart the
server outside the toolkit. Observe that the rules are placed
in various files (corresponding to various kinds of rule seman-
tics); to ease the access to the rules, the editor has filtering
fields in the form of substring matching.

2.3 Rule Suggestion
Once a desired result is investigated, the administrator

can ask the toolkit to suggest rules. In the current version of
the toolkit, the suggestions are restricted to those of the form
s → t. We refer the reader to Bao et al. [3] for the details of
the method deployed to produce suggestions. In essence, a
suggested rule should satisfy two properties. First, it should



Figure 2: Screen shot: provenance tracking

be effective in the sense that it pushes the desired match up
into the top-k matches, where k is a fixed parameter (5 in
our implementation). The second property is informal: the
rule should be natural in the sense that it corresponds to a
semantically justified rewrite (so that it makes sense to the
administrator). For example, skills → expertise is natural as
the two sides have similar meanings, and so is download →
issi in IBM as ISSI is a prominent download/installation tool
inside IBM. To rank the extent to which a rule is natural,
we use a supervised machine-leaning approach.

2.4 Implementation
The toolkit is built as a Web application. On the server

side the implementation is by Java (Servlet) technology car-
ried by Jetty WebServer.2 We use Graphviz3 to compute the
layout of the provenance trellis graph. On the client side the
toolkit uses the Dojo Toolkit4 for the general layout. Data
is communicated between the client and the server mainly
in JSON format.

3. DEMONSTRATION
The goal of the demonstration is to illustrate how the prin-

ciples of programmable search can be realized and facilitated
by the proper tooling and visualization. Our plan is for the
audience to experience using the toolkit as it is intended to
be used by search administrators in the enterprise (and as
it is currently being used by them in IBM). Specifically, fol-
lowing a brief description of the background and underlying
search paradigm we will demonstrate various use cases.

Provenance visualization. We will consider various search
queries and explain the provenance of the top results for
these queries (including the corresponding runtime rules, re-
formulations, field indices and ranking vectors).

Desideratum investigation. For one or more search
queries, we will consider desired search results that are low

2
http://jetty.codehaus.org/jetty/

3
http://www.graphviz.org/

4
http://dojotoolkit.org/

ranked, and use the provenance visualization to explain their
relative low ranking compared to other results.

Runtime programming. We will use the embedded rule
editor to insert, edit and delete rules, and observe their im-
mediate effect on the search results. In particular, we will
show how desired results are pushed to the top by phrasing
appropriate rewrite rules.

Rule suggestion. We will consider cases of low-ranked
desired results and ask the toolkit to suggest rewrite rules.
We will further discuss the quality of these rules and explain
the underlying learning machinery.

Acknowledgments
We are deeply grateful to Nicole Dri and Gayle S. Borge for
providing valuable feedback on the toolkit. We also thank
Shivakumar Vaithyanathan for insightful discussions.

4. REFERENCES
[1] G. Agarwal, G. Kabra, and K. C.-C. Chang. Towards rich

query interpretation: walking back and forth for mining query
templates. In WWW, 2010.

[2] O. Alhabashneh, R. Iqbal, N. Shah, S. Amin, and A. E. James.
Towards the development of an integrated framework for
enhancing enterprise search using latent semantic indexing. In
ICCS, 2011.

[3] Z. Bao, B. Kimelfeld, and Y. Li. Automatic suggestion of
query-rewrite rules for enterprise search. In SIGIR, 2012.

[4] P. A. Dmitriev, N. Eiron, M. Fontoura, and E. J. Shekita.
Using annotations in enterprise search. In WWW, 2006.

[5] R. Fagin, B. Kimelfeld, Y. Li, S. Raghavan, and
S. Vaithyanathan. Rewrite rules for search database systems. In
PODS, 2011.

[6] R. Fagin, R. Kumar, K. S. McCurley, J. Novak, D. Sivakumar,
J. A. Tomlin, and D. P. Williamson. Searching the workplace
web. In WWW, 2003.

[7] D. Hawking. Challenges in enterprise search. In ADC,
volume 27 of CRPIT, 2004.

[8] Y. Li, R. Krishnamurthy, S. Vaithyanathan, and H. V.
Jagadish. Getting work done on the web: supporting
transactional queries. In SIGIR, 2006.

[9] I. Szpektor, A. Gionis, and Y. Maarek. Improving
recommendation for long-tail queries via templates. In WWW,
2011.

[10] S. Vaithyanathan. Building search systems for the enterprise,
2011. SIGIR’11 industrial track keynote.

[11] H. Zhu, S. Raghavan, S. Vaithyanathan, and A. Löser.
Navigating the intranet with high precision. In WWW, 2007.


