
Facilitating Pattern Discovery for Relation Extraction with
Semantic-Signature-based Clustering

Yunyao Li
IBM Research - Almaden

650 Harry Road
San Jose, CA 95120

yunyaoli@us.ibm.com

Vivian Chu
IBM Research - Almaden

650 Harry Road
San Jose, CA 95120

vchu@cal.berkeley.edu

Sebastian Blohm
∗

Microsoft Corporation
Rablstr. 26, 81669 München,

Germany
sblohm@microsoft.com

Huaiyu Zhu
IBM Research - Almaden

650 Harry Road
San Jose, CA 95120

huaiyu@us.ibm.com

Howard Ho
IBM Research - Almaden

650 Harry Road
San Jose, CA 95120

ho@almaden.ibm.com

ABSTRACT
Hand-crafted textual patterns have been the mainstay device of prac-
tical relation extraction for decades. However, there has been little
work on reducing the manual effort involved in the discovery of
effective textual patterns for relation extraction. In this paper, we
propose a clustering-based approach to facilitate the pattern dis-
covery for relation extraction. Specifically, we define the notion of
semantic signature to represent the most salient features of a tex-
tual fragment. We then propose a novel clustering algorithm based
on semantic signature, S2C, and its enhancement S2C+. Experi-
ments on two real-world data sets show that, when compared with
k-means clustering, S2C and S2C+ are at least an order of magni-
tude faster, while generating high quality clusters that are at least
comparable to the best clusters generated by k-means without re-
quiring any manual tuning. Finally, a user study confirms that our
clustering-based approach can indeed help users discover effective
textual patterns for relation extraction with only a fraction of the
manual effort required by the conventional approach.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—Linguistic processing; I.2.7 [Artificial Intelligence]:
Natural language processing—text analysis

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Information Extraction, Clustering, Pattern Discovery

∗Work was done while visiting IBM Research - Almaden.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

1. INTRODUCTION
Relation extraction refers to the task of detecting and classifying

meaningful relations between two or more entities in text. For ex-
ample, the text fragment “please call Alice from CompanyA Inc. at
her cell phone (123) 456-7890” contains the EMPLOYEEOF relation
“Alice from CompanyA Inc.” and the PERSONPHONE relation “Alice
... at her cell phone (123) 456-7890”. Relation extraction is impor-
tant for many applications, ranging from information retrieval and
question answering to text entailment.

Most information extraction systems rely on knowledge engi-
neering or machine learning to generate the “task model” for rela-
tion extraction. In the knowledge engineering approach, the model
is usually in the form of manually created extraction rules. In
the machine learning approach, the model is learned automatically
from a manually labeled training data in a supervised or semi-
supervised fashion. The machine learning approach has been popu-
lar in the research community in recent years (e.g. [1, 5, 12, 24, 32,
39, 40]). At the same time, the knowledge engineering approach
remains a widely adopted practical solution for relation extraction
due to its transparency, customizability, and maintainability. These
properties are highly valued by emerging enterprise text analytics
applications (e.g. compliance and semantic search) [9, 11, 14, 31].

In the knowledge engineering approach, a developer creating
rules for a binary relationship (e.g. pairs of PERSON and PHO-
NENUMBER) typically starts by manually examining the contexts
between the pairs. She then determines whether each pair forms
a meaningful relation and manually discovers textual patterns in-
dicating the desired relation. Finally she writes rules to incorpo-
rate the patterns observed. These rules, when applied to a training
corpus, usually generate a large number of results. The developer
examines a (typically small) sample of the results, and determines
whether each one is positive or negative. She then discovers po-
tential improvements to the rules by examining the relationship be-
tween the results, the original context strings, and the applicable
patterns. She iterates through the process until she is satisfied with
the precision and recall of the relation extraction annotator. The
following example illustrates one step in this process.

EXAMPLE 1. PERSONPHONE. An obvious pattern for iden-
tifying the PERSONPHONE relation is “PERSON followed by ‘at’
followed by a PHONENUMBER within the same sentence”, repre-
sented as P1 = “〈PERSON〉 .* at .* 〈PHONENUMBER〉”. While P1

can correctly identify valid PERSONPHONE relation such as “Alice
at (123) 456-7890” and “Bob can be reached at (111) 222-3333’’,
it not only produces incorrect matches such as “John’s assistant at
x1234” but also fails to identify correct matches such as “Jane’s
cell: (222) 333-4444”. In order to account for precision and re-
call, a rule developer needs to refine P1 (e.g. P2 = “〈PERSON〉
(can be reached)? at .* 〈PHONENUMBER〉”) as well as identifying
additional patterns (e.g. P3 = “〈PERSON〉’s (cell|office|home)? :
〈PHONENUMBER〉”).

As can be seen, this is an extremely tedious and error-prone man-
ual process that can take days or even weeks of work to develop
rules for a single relation. The focus of this work is to reduce the
human effort involved in writing rules for relation extraction. In
this paper, we propose a novel formulation of clustering algorithm
called Semantic-Signature Clustering (short as S2C) to facilitate
the discovery of patterns for relation extraction. In the rest of the
section, we first summarize our contributions and then discuss in
detail the related work.

1.1 Contributions
In a key departure from prior formulations, the clustering prob-

lem presented in this work not only clusters similar strings, but
also generates meaningful patterns. These patterns are similar to
the manually generated ones used in relation extraction rules. Our
specific contributions are:

• A novel clustering problem consisting of clustering strings of
relation candidates and generating clusterings that share the
same pattern for relation extraction.

• Formulation of this clustering task as a three-step algorithm
S2C, where each of these steps can be optimized individually
with well-known techniques:

– (Potentially offline) sequence mining & rule generation

– Efficient rule application to generate semantic signa-
tures

– Efficient database-like grouping based on exact match

• Extensive experimental results over real-world data sets that
showcase the effectiveness of S2C. The results include (1)
improved precision and recall of relation extraction rules writ-
ten with the assistance of S2C+ over product-quality relation
extraction rules generated in a purely manual fashion; (2)
S2C+ runs an order of magnitude faster than conventional
k-means clustering for real-world relation extraction tasks.

Conventional text clustering algorithms (e.g. k-means [27]) are
based on computing the similarity of context strings among each
other or between each context string and a cluster representative.
Context strings are mapped to a space (e.g. converted to a numeric
vector) in which such a distance can be computed. For large scale
relation extraction, both the numbers of context strings (depend-
ing on the size of the corpus) and potential clusters representatives
(one needed for each way to express a relation) grow rapidly to
large sizes and causes the number of comparisons to grow rapidly.
As we will show later, our clustering method saves these compar-
isons by only requiring a rule-based local transformation on the
context strings. Furthermore, unlike conventional clustering algo-
rithms, our clustering method requires no extensive manual tuning
on the parameters. To further motivate our approach, we now dis-
cuss prior work with a focus on related work in the area of cluster-
ing for relation extraction and the limitations of these techniques.

1.2 Related Work
Textual patterns play an important role in relation extraction [6,

21]. As discussed earlier, learning of patterns for relation extrac-
tion is typically a supervised process in learning-based systems or a
tedious manual process in knowledge-engineering-based systems.
Several semi-supervised systems were developed to enable relation
extraction using a large unlabeled corpus and a small set of seeds [1,
4, 16, 18, 37].

A number of recent works focus on unsupervised relation iden-
tification. [20, 7] discover relations of co-occurring named entities
by clustering based on the words that appear between each pair.
[13] groups textual occurrences based on the so-called hook words
and then uses statistical correlation between the related entities
contained in the textual examples to generate meaningful groups.
Another clustering based method was proposed by [33] where the
goal is to identify relations by clustering pairs of entities. Classical
sequence patterns are mined as part of this approach to generate
features for clustering. The SNE system [25] clusters the subject-
verb-object triples generated by an Open Information Extraction
system[3] into semantically coherent relations by probabilistically
modeling the triples in second-order Markov logic and applying a
co-clustering algorithm.

While unsupervised relation identification can reduce the labor
cost of semi-supervised systems by automatically generating seeds
[34], little work has been done for the building of relation extrac-
tion patterns used by the knowledge-engineering-based systems.
Our work seeks to fill this gap. It takes advantage of the unsuper-
vised nature of clustering method similar to unsupervised relation
identification, but with the goal of facilitating pattern discovery for
relation extraction for knowledge-engineering-based systems. Our
clustering method is configurable by the user using intuitive fea-
tures, as the default clustering may or may not produce the granu-
larity desirable to a user.

Our frequency-based pattern generation technique was motivated
by the vGram approach [26] which performs fuzzy string match-
ing by means of an automatically mined set of variable length sub-
sequence. Our approach is based on a modification of the Apriori
algorithm [2]. A similar approach is applied to web usage log min-
ing in [29]. Their technique is based on task-specific pruning of the
pattern candidate space. We extend their technique to mine interest-
ing pairs of sequences. The underlying generalization of Apriori is
described in [35]. An application of a more basic sequence mining
technique to sentiment detection in texts can be found in [23].

2. OVERVIEW
In this work, we are primarily concerned with the task of cluster-

ing the contexts extracted from the vicinity of relation candidates
to assist the discovery of patterns used for relation extraction. Once
these clusters are formed the patterns may be generated either man-
ually by an annotator developer or automatically by existing tech-
niques such as [6, 16]. This second phase will not be discussed
further here, but we do present user study results in the experimen-
tal section to demonstrate the effectiveness of the generated clusters
in assisting annotator developers.

For pedagogical convenience, in the rest of the paper we restrict
our attention to only consider binary relations and only context
strings between the two entities in the relation. It will be obvi-
ous that the techniques presented here are applicable to more gen-
eral situations. For example, the context string could include the
complete sentence(s) in which the two entities appear, which may
extend to the left and right of both entities.

Under the above restrictions, the clustering problem for a target

Figure 1: Flow chart for semantic signature generation

Input String Relation Candi-
date c

Context String sc

Nadia Ficara \n Event
Manager \n tel: 555-
3567

Nadia Ficara,
555-3567

\n Event Manager
\n tel:

Bill can be reached at
\n tel: 555-4567 early
Monday morning.

Bill, 555-4567 can be reached at
tel:

John can be found
555-4274

John, 555-4274 can be found

Figure 2: Example input, relation candidates and context
strings

relation R can be described as follows. We are given two sets of
entities E1 and E2, a set of relation candidates C ⊂ E1 × E2,
and a set of content strings SC associated with C. Each string
sc ∈ SC is extracted from the vicinity of a candidate c = (e1, e2) ∈
C according to predefined rules. The goal of the clustering task
is to generate disjoint clusters C = C1 ∪ C2 ∪ ... ∪ Cn ∪ Ot

so that each cluster Ci is associated strongly with either R or its
complement. These clusters serve as hints for positive and negative
patterns for the relation R. The special cluster Ot (for “Orphan”)
is a conglomerate of all those clusters smaller than a threshold t.

Our strategy for generating these clusters is to associate each Ci

with a distinct Semantic Signature Gi. This process (dubbed S2C)
consists of two stages: (1) Generating first level semantic signa-
tures; and (2) further clustering of these semantic signatures. The
first stage utilizes the statistical correlations of the context strings.
The second stage utilizes textual similarities of the context strings.
These stages are described in Section 3 and 4 respectively.

3. SEMANTIC SIGNATURE GENERATION
The semantic signature generation stage consists of several steps,

as illustrated in Figure 1. We describe details of each step in this
section. Figure 2 provides three example inputs. We use data in
the first row to construct a running example for this entire section.
Figure 3 shows the results of the transformations in each step.

Step 1: Generating Frequent Sequences.

Context string \n Event Manager \n tel:

Frequent sequence set {\n; manager \n tel:; \n tel:; tel }

After subsumed {\n; manager \n tel: }*

After drop rule {manager \n tel: }

After drop rule with split
sequences

{\n; tel }

Figure 3: Example results of transformations in S2C

* The first “\n” (a line break character) in the context string
is not subsumed because it is not part of the substring “Man-
ager \n tel:”.

The goal of this step is to map the context strings to a reduced
set of sequences that are intended to capture the most salient fea-
tures of the context strings. This mapping is done in the following
process with three parameters: a tokenization procedure T , an in-
teger l for maximum length of sequence, and an integer f for min-
imum frequency of the sequence. The steps are: (1) Tokenizing
each context string sc by T into a token sequence s. (2) Collecting
all subsequences of s with length no more than l generated from
all sc ∈ SC . (3) Retaining all those with at least f occurrences in
the corpus. The result is a frequent sequence set SC,T,l,f . In actual
implementation, a single pass through the data is sufficient.

Step 2: Computing Correlation.
Once each context string is reduced to a set of sequences, we can

collect statistics to compute the correlation between sequences. By
discovering the correlation between sequences, similar sequences
within the same set can be removed. This results in a semantic sig-
nature that represents the key elements of the context string. Differ-
ent measure of correlation can be used in this step. In this paper, we
choose uncertainty coefficient [38] to be the measure of correlation
between two sequences.

For each ordered pair of frequent sequences x and y, the propor-
tion of information in x that is shared with y can be measured by
the uncertainty coefficient

U(x|y) = I(x, y)/H(x), (1)

where I(x, y) is the mutual information between x and y, and
H(x) is the entropy of x. If U(x|y) is close to unity, dropping x in
the presence of y will not remove a significant portion of available
information. In practice, we can approximately compute I(x, y) =
p(x, y) log p(x,y)

p(x) p(y)
, and H(x) = −p(x) log p(x), where p(x)

and p(x, y) are the empirical probabilities of occurrences and co-
occurrence. The definitions of I(x, y) and H(x) involve summing
over the probabilities of occurrence and non-occurrence. However,
since our interest here is only in the effect of occurrences of the se-
quences, and since the probability of non-occurrence is much larger
than that of occurrence, terms for non-occurrences can be ignored.

Step 3: Generating Drop Rules.
For each pair of x, y ∈ SC,T,l,f , if U(x|y) is larger than a pre-

defined threshold t we generate a “drop rule” DROP(x|y). They
are stored in decreasing order of corresponding U(x|y). Figure 4
provides an example of some uncertainty coefficients and the cor-
responding drop rules generated. These will be used later in our
running example.

Step 4: Removal of Subsumed Sequences.
To further remove noise from the semantic signature, we remove

x y U(x|y) U(y|x)
manager tel: 0.962 0.802

manager \n tel: \n 0.762 0.553

(a) Example uncertainty coefficients

U(x, y) Drop Rules

0.962 DROP(manager|tel:)

0.802 DROP(tel:|manager)

0.762 DROP(\n|manager \n tel:)

(b) Example drop rules generated with threshold
t = 0.75 and stored order of U(x|y)

Figure 4: Example drop rule generation

those sequences x in the presence of other sequences y if the origi-
nal string for x is found within the original string of y. Simply put,
if the original string of x is a substring of the original string of y,
x is considered to be subsumed by y and thus removed from the
sequence set.

Consider the example in Figure 3, where the given context string
is “\n Event Manager \n tel:”. The sequences {\n tel:} and {tel:} are
subsumed by {manager \n tel:} since they are from the same sub-
string. These are then removed. resulting the final sequence set {\n;
manager \n tel:}.

Step 5: Applying the Drop Rules.
The drop rules are applied to remove non-informative sequences.

As described earlier, these rules were generated to indicate that one
sequence is not informative in the presence of another sequence.
For instance, the current set {\n; manager \n tel:} results in {manager
\n tel:} when the rule DROP(\n|manager \n tel) is applied.

The rules are applied in their stored order, which is determined
by the correlation measure associated with each rule. Applying
the drop rules in this order guarantees that the sequence with less
useful information is dropped. For instance, if both DROP(x|y)
and DROP(y|x) exist where DROP(x|y) has a higher measure of
uncertainty, then if the sequence set includes {x, y}, x is removed
from the set and DROP(y|x) has no effect. An example of this
appears in the following step.

One may wonder why we chose to apply the drop rules after
removing subsumed sequences, instead of before. When gener-
ating statistics, the results are generated based on the correlation
between all pairs of sequences without considering the subsumed
relationship. However, when applying the rules, we take a conser-
vative approach and require a subsequence to be as important by
itself as it is with other subsequences. If rules are applied before,
essentially a higher weight is given to each subsequence and im-
portant sequences can be lost. Take, for example, the sequence set
{a, ab, c} where ab represent a sequence comprised of the subse-
quences a and b. If DROP(c|a) is applied before subsumed, the
resulting signature is {ab} and c is lost. However, if subsumed is
applied first, which removes a due to the presence of ab, the re-
sulting signature is {ab, c}, preserving c. Only an explicit rule like
DROP(c|ab) would remove c.

Step 6: Applying the drop rules to split sequences.
For certain sequences, a second pass with the drop rules is re-

quired, after all larger sequences are split into subsequences of

Original Context Text Semantic Signature

’s number is {number}
and her phone number is {number}
; number: {number}
’s cell number {number}
at {at}
with at questions at {at}
tomorrow at {at}

Figure 5: Sample entries of two clusters generated by S2C

Size Sample Original Context Text Semantic Signature

19 ’s number is {number}
2 \n\n Domestic Number: {domestic number}
1 He said the number is {number is}

Figure 6: Example of three similar clusters generated by S2C,
which are merged into one cluster by S2C+

length 1. This captures cases where a sequence of length 1 is ca-
pable of describing the entire context string, but has been stored
together with a second sequence of less importance.

For the previous sequence set {\n; manager \n tel:}, the only rule
that would apply is D1 =DROP(\n|manager \n tel:). However, by
splitting the larger sequences, the rules in Figure 4, can now remove
sequences that do not contribute meaningful information to the final
semantic signature. Applying the rules, in stored order, results in
a final sequence string of {\n; tel:}. Notice that when the rules are
applied in stored order, {manager} was dropped as opposed to {tel:}.

Step 7: Clustering based on semantic signature.
We call the resulting sequence of tokens representing each con-

text string the semantic signature of the original string.
Once we obtain the semantic signature of each context string for

all the relation candidates, the clustering of context strings SC is
straightforward — all the relation candidates associated with the
same semantic signatures form one cluster. Candidates with differ-
ent semantic signatures are in different clusters. In addition, any
cluster with size smaller than a predefined threshold t is reassigned
to a special cluster Ot. We refer to this clustering method as S2C.

Figture 5 illustrates sample entries from two clusters of relation
candidates generated by S2C. As can be seen, the entries in each
cluster are indeed semantically similar to each other, as represented
by their sematic signature, {number}, {at}, respectively.

4. CLUSTERING AND APPLICATION
In this section, we discuss the issues of applying the S2C results

to assist in annotator development.

4.1 Merging of small groups based on string
similarities

One remaining problem with the S2C algorithm is that the “Or-
phan” cluster Ot can be a non-trivial size. Recall that Ot is a con-
glomerate of all clusters with size smaller than t. It is clear that
the content of Ot is very diverse and difficult to discover mean-
ingful patterns from. Consequently, when Ot is large the resulting
relational annotator developed with the help of this clustering may
have a poorer recall. In order to reduce the size of Ot, we utilize
the observation that the semantic signatures of many small clusters
are often similar to those of larger ones. For instance, Figure 6 lists
three different clusters created by S2C, with different but similar
semantic signatures. If we merge some of the small clusters with

larger ones, the total number of clusters stays the same, but the
size of Ot will decrease. As long as the semantic signatures of the
merged clusters are similar, the clusters can still assist the pattern
discovery for relation extraction.

Merging small clusters into larger clusters, rather than simply
discarding them, improves the results in two ways. First, after
merging we still retain the set of original semantic signatures. This
provides the user with very useful hints on the possible variations
of semantic signatures. Second, the user can also drill down to all
these clusters to see actual examples, which is a very crucial re-
quirement in example-based rule development.

We measure the distance between two clusters by the distance
between their respective semantic signatures, which are sets of to-
ken sequences. There are several ways to measure the (dis)similarity
between them. For example, we can use the Jaccard distance on
these two sets [22]. Given such a distance d, we proceed in the fol-
lowing steps: (1) For all the small clusters C that went into Ot, we
look for those with size smaller than re-clustering threshold ts ≤ t.
(2) If there exists a cluster Cj with size larger than tl ≥ t such that
d(C,Cj) > s, remove C from Ot to Cj . When there are multi-
ple Cj satisfying the condition, we pick the largest among them.
Other policies might be advantageous in certain aspects and further
research is needed to quality them.

For example, when given ts = 3, tl = 9 and d the Jaccard
Distance, the three clusters in Figure 6 are merged into one.

4.2 Complexity of the S2C and S2C+ algorithms
The computation in S2C involves several pass through the data

points (context strings). In step 1 (generating frequent sequence),
the set has O(nml) cost, where n is the number of data points, m
is the average number of tokens generated from each context string,
and l is the maximum length subsequences allowed. Steps 2 and 3
(computing uncertainty coefficients and drop rules) have O(ns2)
cost, where s < ml is the average number of frequent subse-
quences for each context string. Seps 4 and 5 (removing subsumed
subsequences and of applying drop rules) each also has O(ns2)
cost. Step 6 (applying drop rules on split strings) has an O(nms)
cost. The final clustering step has O(ns) cost. Therefore the total
cost isO(ns2)+O(nms). Note that bothm and s are only depen-
dent on the distribution of the context strings and the parameters
used in the algorithm. They do not depend on the size of the data
set. Therefore the cost of this algorithm is essentially linear in the
size of its input data.

The computation in S2C+ involves sweeping through the small
clusters and computing their distance to each of the large clusters.
The cost is O(k1k2d), where k1 and k2 are the numbers of large
and small clusters, and d is the cost of calculating a distance be-
tween two semantic signatures. If we choose the cutoff threshold t
by limiting the number of large clusters to at most L, then the cost
is bounded by O(nLd). Since L and d are independent of the data
size, the cost of S2C+ is also linear in the size of input data.

In summary the computational complexity of the S2C and S2C+
algorithms are both linear in the input data size.

In contrast, the k-means algorithm is known to have a complexity
O(Iknt), where I is the number of iterations, and t is the time
needed to calculate the distance between two points.

4.3 User interface for utilizing the clustering
results

We designed a novel GUI to facilitate the exploration of the clus-
ters generated by S2C or S2C+ for pattern discovery [8]. See the
screenshot in Figure 7. The basic idea is to allow a developer to
quickly identify a cluster of interest based on its size and seman-

Figure 7: Screenshot of user interface

A bubble graph is used to represent the clusters. A bub-
ble has a size proportional to that of its corresponding
cluster and uses the semantic signature as its label.

tic signature and then have the ability to drill down and explore
the actual relation candidate contained by the cluster. In addition,
through the GUI, the user should be able to exploit any labeling
information available.

One of the most important design decision of the S2C system is
that it can be a useful tool in the development cycle of annotator
development. This imposes a constraint on system response time.
As will be shown in the experimental section, S2C is at least an or-
der of magnitude faster than k-means. In addition, as many of the
steps in the S2C process are reusable, the actual responses time of
S2C embedded in an annotator development environment is much
shorter than the end-to-end running time. In many cases, the com-
putation of frequent sequences and drop rules need to be computed
only once. The user adjustable parameters are the thresholds for ap-
plying drop rules, for the orphan group, and for merging the small
groups. Re-computation when these parameters change are almost
instantaneous and are easily controlled in the GUI.

5. EXPERIMENTS
In this section, we present an empirical study of the S2C and

S2C+ algorithms over two real-life data sets. The main goal of
the study is answer the following questions: (1) Do the algorithms
generate high quality clusters for relation extraction? (2) Are the
algorithms effective in reducing manual effort in discovering tex-
tual patterns for high-quality relation extraction? (3) How do the
algorithms compare with existing clustering algorithms, in both the
quality of the clusters created as well as runtime performance?

5.1 Experimental Setup

5.1.1 Data Sets
For the experiments, we used two different real-life text corpora:
• Bio: A collection of 2,068 biographies from 456 SEC Form

DEF 14A filings1.
• Email: A collection of 37,939 email messages from the pub-

licly available Enron collection [28].
The former contains formal clean text, while the latter contains

mostly informal noisy messages.

1Tthe data set is now publicly available at URL.

5.1.2 Relation Extraction Tasks
For each data set, we chose a real-life relation extraction task

that has been previously implemented for commercial products via
a knowledge-based approach. Specifically, for the Bio data set, we
chose the task of identifying POSITIONINORG and for the Email
data set, we chose the task of identifying PERSONPHONE. The
goal of our study is to compare the patterns produced manually,
with ones crafted with the assistance of S2C and S2C+ in terms of
the extraction quality of patterns as well as the amount of manual
effort required to derive these patterns.

5.1.3 Gold Standard
We obtained the labeled data via the use of Amazon Mechani-

cal Turk (MTurk), which has been shown to produce high quality
annotations for a variety of natural language processing tasks [36].
Following the practice by [17], we first used existing state-of-the-
art NER annotators [10] to identify Person and PhoneNumber over
Email, Position and Organization over Bio. We then obtained noisy
potential relation candidates by extracting 〈 Person, PhoneNum-
ber〉 and 〈Position, Organization 〉 pairs from the data sets, with
each pair of entities within 40 tokens of each other.2 We then sub-
mitted each candidate along with its context as a Human Intelli-
gence Task (HIT) to MTurk and asked the workers to select from
three annotation options: the candidate (1) represents the relation,
(2) does not represents the relation, or (3) not applicable.

We initially launched a pilot study with 100 HITs (i.e., 100 rela-
tion candidates). Upon the completion of the pilot and verification
of the quality of the result, we then deployed the full study for
all the relation candidates. Each HIT was assigned to five unique
workers for a cost of $0.02 each. A total of 5171 HITs were submit-
ted for Bio and 5771 HITS for Email. The majority vote of workers
decided the final labeling. We also used known control answers to
identify spurious responses and unreliable users to filter out noisy
labels. Each rejected assignment was then resubmitted to MTurk
until high quality answers were obtained.3

5.1.4 Comparison Study
In our experiments we evaluated both S2C and its enhancement

S2C+ with ts = 3 and tl = 10. We also compared them to k-
means [27], a popular generic clustering algorithm, using the im-
plementation from WEKA [19]. Note that the results of k-means is
sensitive to k, the number of clusters to be generated. Since we do
not know about the optimal number of k, we set k of k-means to
be the number of clusters found automatically by S2C and S2C+,
denoted as k-means1 and k-means2 respectively. For all the clus-
tering algorithms, we posed the threshold for orphan cluster t = 5
and move all the clusters with size smaller than t into a special
orphan cluster.

5.1.5 Experimental Platform
We ran all our experiments on a Windows-based PC with Intel

Core 2 Duo processor with a single core speed of 2.20GHz and
total RAM of 3.0 GB.

5.2 Experiment 1: Quality of Clusters
We first examined the quality of the clusters generated by S2C

and S2C+ in two aspects: (1) the total number of clusters that the

2For fair comparison, we used the same token boundary limit as
that used in the existing annotators.
3We rejected 1.8% of the answers for the POSITIONINORG task
over Bio and 5.1% of the answers for PERSONPHONE task over
Email.

(a) By Number of Entries

(b) By Percentage of Entries

Figure 8: Quality of clusters Generated by S2C, S2C+, k-
means1, and k-means2 over Bio Corpus

k-means1 and k-means2 correspond to k-means with k being the
cluster sizes found using S2C and S2C+ respectively.

algorithm generates, which determines the number of textual pat-
terns required to develop the relation extraction annotator; (2) the
overall quality of the clusters.

5.2.1 Plausible Reliability
Intuitively, the quality of a cluster correlates with how reliable a

(positive or negative) textual pattern can be generated based on the
cluster. Therefore, given the precision of a clusterC Precision(C) =
|C

⋂
G|

|C| , where G is the gold standard, the closer Precision(C) to
1 or 0, the higher the quality of C. Following this intuition, we
propose a new metric called Plausible Reliability (short as PR) to
measure the quality of C, based on how close P (C) is to 1 or 0,
defined as follows:

PR(C) = max(1− Precision(C), P recision(C)) (2)

Hence, the value of PR(C) for a cluster C is between 0.5 and 1.
The higher the value of PR(C) is, the better the quality of C.

To measure the overall quality of a set of clusters C = C0, ...Cn,
we can use their average PR, defined as follows:

Average PR(C) =
∑n

i=0 |Ci| × PR(Ci)∑n
i=0 |Ci|

(3)

5.2.2 Results over Bio

We first analyze the results obtained over Bio for the four dif-
ferent techniques. Figure 8(a) shows the histogram of clusters of

Figure 9: Average PR and data coverage of clusters generated
by k-means with varying k

PRS2C and PRS2C+ indicate the average PR of the clusters
generated by S2C and S2C+ respectively.

different plausible reliability. For all four techniques, the number
of clusters is not large, ranging from 70 for S2C and S2C+ and 89
for k-means1. More importantly, the majority of the clusters (rang-
ing from 68.5% for S2C+ to 80.0% for k-means1) are high quality
clusters with PR higher than 0.9. Furthermore, the vast majority of
the clusters (around 90% across the board) are at least good clus-
ters, i.e. clusters with PR higher than 0.8.

Another important aspect of the quality of the clusters is their
coverage, especially of the high quality ones. Figure 8(b) depicts
the distribution of data by plausible reliability. As we can see, the
high quality clusters generated by all techniques cover the majority
of the data (ranging from 72% to 76%). Furthermore, good quality
clusters, i.e. clusters with PR higher than 0.8, cover the major of the
remaining data. Recall that in the experiment, we provide k-means
the cluster sizes found using S2C and S2C+ for k-means1 and k-
means2 correspondingly. We found that on this data set, k-means1
and k-means2 produced higher number of high quality clusters than
S2C and S2C+ respectively. We also found that the clusters pro-
duced by k-means1 and k-means2 have higher coverage than those
produced by S2C and S2C+ respectively, but the advantage is very
small.

We can see from Figure 8 that as expected, S2C+ has produced
fewer high quality clusters than S2C, as more noise has been in-
troduced into the clusters when merging small clusters with larger
ones in S2C+. Meanwhile, we also observe that S2C+ has effec-
tively reduced the size of the orphan cluster and evidently improved
the coverage of the clusters over S2C.

Since the result of k-means is sensitive to the given value of k, in
order to verify that the automatically found cluster sizes were rea-
sonable parameters for k-means, we evaluated the performance of
k-means on the Bio corpus with varying k-parameters. The results
are summarized in Figure 9. As can be seen, the average PR of
(weighted by the number of entries contained by each cluster) the
clusters produced by k-means increases gradually with the increase
of k, while the coverage of the clusters drops steadily as well. The
graph also indicates that the size automatically discovered by S2C+
provides a good trade off between the coverage of the clusters and
the overall quality of the clusters.

5.2.3 Results over Email

The performance of the algorithm over the Email set are analyzed
similarly and the results are shown in Figure 10. Similar to their

(a) By Number of Entries

(b) By Percentage of Entries

Figure 10: Quality of clusters generated by S2C, S2C+, k-
means1, and k-means2 over Email Corpus

k-means1 and k-means2 correspond to k-means with k being the
cluster sizes found using S2C and S2C+ respectively.

performance over Bio, all algorithms generate relatively small num-
bers of clusters, with most being high quality clusters that together
cover most data. Compared to the results over Bio, the number of
high quality clusters generated by all techniques increases. How-
ever, their coverage drops considerably across the board. The drop
is especially significant for k-means1 and k-means2, both from a
coverage of lower 70% over Bio to that of lower 40% over Email.
When taking good quality clusters into consideration, the coverage
of k-means1 and k-means2 over Email remains lower than that over
Bio. However, the coverage of S2C and S2C+ actual improves from
around 70% on Email to nearly 80% on Bio.

S2C and S2C+ consistently outperform k-means1 and k-means2
respectively both in terms of the good quality clusters generated
and in terms of the coverage of the clusters. The advantage is espe-
cially pronounced when we consider the coverage for clusters with
PR higher than 0.8, where the coverage of good quality clusters
of k-means1 and k-means2 is drastically lower than ones generated
by S2C and S2C+. The decay of the performance of k-means1 and
k-means2 on Email is not surprising — Email is much more noisy
than Bio, and as a result, clustering blindly based on all the string
content leads to less reliable clusters.

Once again, S2C+ does introduce noise to the clusters, with the
coverage of high quality clusters dropping slightly from 56.8% to
54.5%. But at the same time, it effectively reduces the number of
clusters that the developer needs to evaluate.

Semantic Signature Pair Example Context

at Kristen Albrecht,x34763 please call Brent Price at x37647 or 〈1〉 at 〈2〉
Pamela Merchant,415-703-1404 ...Deputy Attorney General ; 〈1〉 ; at 〈2〉 or ...

number Curt,713-230-7205 ...〈1〉’s number is 〈2〉...
Andrea Walters, (281) 584-1405 His assistant is 〈1〉 and her phone number is 〈1〉

\n ph Doug Kinney,703-561-6339 〈1〉 \n Ph: 〈2〉
Terrie James,713-853-7727 〈1〉 \n ph. 〈2〉

Figure 11: Sample clusters over Email: two candidate pairs for each cluster, and an example context for each pair.

5.3 Experiment 2: Effectiveness of S2C

Results of Experiment 1 indicate that S2C and S2C+ are able
to automatically generate high quality clusters with good coverage
without requiring manual tuning. Intuitively, the clusters generated,
such as shown in Figure 11, should be able to help a rule developer
generate high quality extraction patterns with reduced manual cost.
To evaluate whether this main goal of our work is achieved, we
conducted the following user study on the effectiveness of S2C al-
gorithms.

In this experiment, each data set is randomly partitioned into
80% training and 20% test data. Two rule developers were asked
to independently write the PERSONPHONE annotator for Email and
POSITIONINORG annotator for Bio based on the clusters generated
by S2C+ over the training data. To quantify the amount of man-
ual effort involved in the annotator development, each developer
was given 2 hours for each task. We then compared the extrac-
tion quality of the annotators developed with the help of S2C+ with
the corresponding product-quality annotators developed previously
using conventional purely manual approach over the entire data set.

The results are summarized in Table 1 and 2. As can be seen,
even though the developer using the purely manual approach was
given much longer time (2 to 3 weeks vs. 2 hours) than the de-
velopers using the S2C+-assisted approach, the extraction quality
of the annotators created in the conventional approach (Manualbio
and Manualemail) is significantly lower than that of the annota-
tors developed with the assistance of S2C+ (S2Cbio and S2Cemail)
in recall and F-measure 4. In addition, the precision of the anno-
tators developed by S2C-assisted approach is at least comparable
to, if not better than, the precision of the conventional manual ap-
proach. Specifically, the precision of Manualbio is slightly better
than that of S2Cbio, while the precision of Manualemail is con-
siderably lower than that of the annotator developed with assist of
S2C (S2Cemail). The results confirm that our S2C algorithms are
indeed effective in reducing the manual effort required for develop-
ing high quality relation annotators.

In addition, Figures 12 and 13 show the progression of improve-
ment each time the developer added a new pattern. As one can see,
the recall on both data sets steadily increases while precision is held
consistently high. Furthermore, Table 3 lists the quality results of
the annotators over both training and test data on Bio. The quality
of the annotator over the test data set are comparable to that over
the training data set, implying that no over fitting has occurred.

5.4 Experiment 3: Running time
As discussed earlier, one motivation of our work on developing

the new S2C-based clustering algorithms is to be able to produce
clusters with high efficiency. We therefore also measured the run-
time performance of k-means and S2C in our comparison study.

We found that for both Bio and Email, it took k-means at least
one order of magnitude longer to return results than S2C or S2C+.

4β is set to 0.5 to reflect the practical emphasis on precision.

Table 1: Extraction quality over Bio
Annotator Precision(%) Recall(%) F0.5(%)
Manualbio 98.37 53.68 84.33
S2Cbio Expert 1 97.83 90.42 96.25
S2Cbio Expert 2 98.20 84.86 95.21

Table 2: Extraction quality over Email
Annotator Precision(%) Recall(%) F0.5(%)
Manualemail 90.44 63.36 83.30
S2Cemail Expert 1 92.69 68.96 86.72
S2Cemail Expert 2 91.70 89.26 91.20

Table 3: Statistics for training set vs test set on Bio
Data Set Precision(%) Recall(%) F0.5(%)
Expert 1 Training 97.36 88.97 95.56
Expert 1 Test 97.83 90.42 96.25
Expert 2 Training 97.39 86.03 94.88
Expert 2 Test 98.20 84.86 95.21

For instance, over the Email corpus, it took k-means 50 minutes
to generate all the clusters compared to the 5 minutes needed for
S2C. Such long delay in generating results is problematic, since
the clustering algorithms are embedded in an interactive annotator
development tool where developers may desire to make changes
to the configuration parameters to generate optimal clusters. Fur-
thermore, S2C can often reuse the statistics previously computed
to further speed up the cluster generation process based on various
optimization techniques similar to database optimization. For in-
stance, if the developer only makes the threshold for uncertainty
coefficient stricter, the algorithm can determine that the only steps
from drop rule generation need to be recomputed. Finally, k-means
requires the user to run the clustering multiple times to find the op-
timal k-parameter and can potentially cause further delay in cluster
generation.

We also observed that k-means tends to consume much more
heap-based memory that S2C. When running our more compli-
cated data set Email, often times k-means would not return a re-
sult because it would eventually consume over 1.5 GB of memory.
In contrast, S2C never consumes over 1 GB of memory through-
out our experiments. One reason is that our intermediate steps are
saved to a database to conserve heap memory.

Given the fact that most of our annotator development are done
on a laptop-based environment similar to the one used in our exper-
iments, we can see that S2C is more suitable to assist the pattern

(a) Expert 1 Results

(b) Expert 2 Results

Figure 12: Changes of precision and recall of POSITIONINORG
annotator over the iterations. The dotted lines are the results
of the manually constructed annotators.

discovery task for relation extraction for both its faster response
time and lower memory consumption.

5.5 Discussions of results
In Experiment 2, the annotators developed with the assist of

S2C+ significantly outperform those developed in the conventional
approach, while requiring a fraction of the development effort. The
high quality clusters and their informative semantic signatures pro-
vided effectively assistance in the pattern discovery process, re-
ducing the development time for a high-quality relation extraction
annotator from weeks using the conventional purely manual ap-
proach5 to merely hours using our new approach. Two additional
issues were identified that may further speed up the development
process, as will be discussed briefly in the following.

One issue concerns the usability of the clustering-based pattern
discovery tool. Both expert annotator developers found that our
GUI was effective in helping them understand and explore the clus-
ters. However, they reported difficulty in keeping track of clusters
that are already covered by their existing patterns, which resulted
in wasted time developing additional patterns. One way to address
this issue is to integrate the tool into the annotator development en-
vironment, so that the coverage of the patterns crafted by the devel-
oper is reflected automatically in the visualization of the clusters.

5According to an internal third-party report, the minimum amount
of time required for the development of a product-quality relation
annotator is 2 to 3 weeks.

(a) Expert 1 Results

(b) Expert 2 Results

Figure 13: Changes of precision and recall of PERSONPHONE
annotator over the iterations. The dotted lines are the results
of the manually constructed annotators.

The other issue is that while the semantic signature of a cluster
provides valuable starting point for the generation of the patterns
for the cluster, the actual pattern generation is still a manual pro-
cess. A promising future direction is to generate those patterns in
an automatic or semi-automatic fashion. As we have discussed in
the relation work, there are a number of existing works on pattern
induction based on a small number of seeds [4, 6, 15, 18, 30, 37]. It
would be interesting to integrate those techniques into the context
of a more interactive pattern discovery tool.

6. SUMMARY AND FUTURE WORK
We proposed a clustering-based approach to assist the pattern

discovery process, and presented two novel algorithms, S2C and
its enhancement S2C+, to automatically cluster relation candidates
based on their semantic signatures. Our extensive experimental
study has confirmed the practical impact of this approach — with
the assist of the clusters, a rule developer can craft product-quality
annotators for relation extraction with significantly lower manual
effort than that required by the conventional manual approach. Fur-
thermore, S2C and S2C+ not only run an order of magnitude faster
with less memory required than k-means, they also generate clus-
ters of a comparable or better quality.

As described earlier, we have fully implemented our semantic-
signature-based clustering algorithms with a user-friendly GUI. In
fact, this pattern discovery tool is being transferred into a commer-
cial product. For future work, we plan to focus on the two issues

discussed in Section 5.5 to further improve the usability of this tool
and to explore the feasibility of automating the pattern generation
process based on the clusters.

7. REFERENCES
[1] E. Agichtein and L. Gravano. Snowball: extracting relations

from large plain-text collections. In DL, 2000.
[2] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In VLDB, 1994.
[3] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and

O. Etzioni. Open information extraction from the web. In
IJCAI, 2007.

[4] S. Brin. Extracting patterns and relations from the world
wide web. In WebDB, 1999.

[5] R. Bunescu and R. Mooney. Learning to extract relations
from the web using minimal supervision. In ACL, 2007.

[6] M. Califf and R. Mooney. Relational learning of pattern
match rules for information extraction. In ACL Workshop on
Natural Language Learning, 1997.

[7] J. Chen, D. Ji, C. L. Tan, and Z. Niu. Unsupervised feature
selection for relation extraction. In IJCNLP, 2005.

[8] C.-F. Chiang, L. Chiticariu, V. Chu, S. Dasgupta, T. Goetz,
H. Ho, R. Krishnamurthy, A. Lang, Y. Li, B. Liu,
S. Raghavan, F. Reiss, S. Vaithyanathan, and H. Zhu. The
SystemT IDE: An integrated development environment for
information extraction rules. In SIGMOD, 2011.

[9] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. R.
Reiss, and S. Vaithyanathan. Systemt: an algebraic approach
to declarative information extraction. In ACL, 2010.

[10] L. Chiticariu, R. Krishnamurthy, Y. Li, F. Reiss, and
S. Vaithyanathan. Domain adaptation of rule-based
annotators for named-entity recognition tasks. In EMNLP,
2010.

[11] L. Chiticariu, Y. Li, S. Raghavan, and F. Reiss. Enterprise
information extraction: Recent developments and open
challenges. In SIGMOD, 2010.

[12] A. Culotta and A. McCallum. Confidence estimation for
information extraction. In HLT/NAACL, 2004.

[13] D. Davidov and A. Rappoport. Unsupervised discovery of
generic relationships using pattern clusters and its evaluation
by automatically generated sat analogy questions. In
ACL-HLT, 2008.

[14] A. Doan, R. Ramakrishnan, and S. Vaithyanathan. Managing
information extraction: State of the art and research
directions. In SIGMOD, 2006.

[15] D. Downey, O. Etzioni, S. Soderland, and D. Weld. Learning
text patterns for web information extraction and assessment.
In AAAI Workshop on Adaptive Text Extraction and Mining,
2004.

[16] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates.
Unsupervised named-entity extraction from the web: An
experimental study. Artif. Intell., 165:91–134, 2005.

[17] M. R. Gormley, A. Gerber, M. Harper, and M. Dredze.
Non-expert correction of automatically generated relation
annotations. In NAACL HLT Workshop on Creating Speech
and Language Data with Amazon’s Mechanical Turk, 2010.

[18] M. A. Greenwood and M. Stevenson. Improving
semi-supervised acquisition of relation extraction patterns. In
IEBeyondDoc, 2006.

[19] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,

and I. H. Witten. The weka data mining software: An update.
SIGKDD Explorations, 11:10–18, 2009.

[20] T. Hasegawa, S. Sekine, and R. Grishman. Discovering
relations among named entities from large corpora. In ACL,
2004.

[21] M. A. Hearst. Automatic acquisition of hyponyms from large
text corpora. In ACL, 1992.

[22] P. Jaccard. Étude comparative de la distribution florale dans
une portion des alpes et des jura. Bulletin del la Société
Vaudoise des Sciences Naturelles, 37:547–579, 1901.

[23] N. Jindal and B. Liu. Mining comparative sentences and
relations. In AAAI, 2006.

[24] N. Kambhatla. Combining lexical, syntactic, and semantic
features with maximum entropy models for extracting
relations. In ACL, 2004.

[25] S. Kok and P. Domingos. Extracting semantic networks from
text via relational clustering. In ECML/PKDD, 2008.

[26] C. Li, B. Wang, and X. Yang. Vgram: Improving
performance of approximate queries on string collections
using variable-length grams. In VLDB, 2007.

[27] J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proc. of the 5th
Berkeley Symp. on Math. Stat. and Prob. UC Press, 1967.

[28] E. Minkov, R. C. Wang, and W. W. Cohen. Extracting
personal names from email: applying named entity
recognition to informal text. In HLT/EMNLP, 2005.

[29] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. A data
mining algorithm for generalized web prefetching. IEEE
Trans. Knowledge and Data Engineering, 15:1155–1169,
2003.

[30] D. Ravichandran and E. Hovy. Learning surface text patterns
for a question answering system. In ACL, 2001.

[31] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and
S. Vaithyanathan. An algebraic approach to rule-based
information extraction. In ICDE, 2008.

[32] E. Riloff and R. Jones. Learning dictionaries for information
extraction by multi-level boot-strapping. In AAAI, 1999.

[33] B. Rosenfeld and R. Feldman. Clustering for unsupervised
relation identification. In CIKM, 2007.

[34] B. Rozenfeld and R. Feldman. High-performance
unsupervised relation extraction from large corpora. In
ICDM, 2006.

[35] L. Schmidt-Thieme and W. Gaul. Frequent generalized
subsequences - a problem from web mining. In Data
Analysis, Scientific Modelling and Practical Application.
Springer, 2000.

[36] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and
fast—but is it good?: evaluating non-expert annotations for
natural language tasks. In EMNLP, 2008.

[37] M. Stevenson and M. Greenwood. A semantic approach to
IE pattern induction. In ACL, 2005.

[38] H. Theil. On the estimation of relationships involving
qualitative variables. Amer. J. Sociology, 76(1):103–154,
1970.

[39] D. Zelenko, C. Aone, and A. Richardella. Kernel methods
for relation extraction. JMLR, 3:1083–1106.

[40] S. Zhao and R. Grishman. Extracting relations with
integrated information using kernel methods. In ACL, 2005.

	Introduction
	Contributions
	Related Work

	Overview
	Semantic Signature Generation
	Clustering and Application
	Merging of small groups based on string similarities
	Complexity of the S2C and S2C+ algorithms
	User interface for utilizing the clustering results

	Experiments
	Experimental Setup
	Data Sets
	Relation Extraction Tasks
	Gold Standard
	Comparison Study
	Experimental Platform

	Experiment 1: Quality of Clusters
	Plausible Reliability
	Results over Bio
	Results over Email

	Experiment 2: Effectiveness of S2C
	Experiment 3: Running time
	Discussions of results

	Summary and Future Work
	References

