Who needs to know what, when?: Broadening the Explainable
Al (XAI) Design Space by Looking at Explanations Across the Al
Lifecycle

Shipi Dhanorkar*
Pennsylvania State University
University Park, PA, USA
shipi@psu.edu

Anbang Xu
IBM Research — Almaden
San Jose, CA, USA
anbangxu@us.ibm.com

ABSTRACT

The interpretability or explainability of Al systems (XAI) has been
a topic gaining renewed attention in recent years across Al and HCI
communities. Recent work has drawn attention to the emergent
explainability requirements of in situ, applied projects, yet further
exploratory work is needed to more fully understand this space.
This paper investigates applied Al projects and reports on a quali-
tative interview study of individuals working on Al projects at a
large technology and consulting company. Presenting an empirical
understanding of the range of stakeholders in industrial Al projects,
this paper also draws out the emergent explainability practices that
arise as these projects unfold, highlighting the range of explanation
audiences (who), as well as how their explainability needs evolve
across the Al project lifecycle (when). We discuss the importance
of adopting a sociotechnical lens in designing Al systems, noting
how the “Al lifecycle” can serve as a design metaphor to further
the XAI design field.
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1 INTRODUCTION

From the subtle, predictive text suggestions offered by many text
input interfaces, to the computer vision classifications that help
homeowners identify intruders on home security camera footage
or tag friends in snapshots, or the map-routing optimization apps
that help shave minutes off of a commute, such encounters with
artificial intelligence (AI) fill our daily lives. As Al applications
become more widespread, the ways in which we interact with and
come to understand these capabilities will shape not only how we
relate to ourselves and to others, but also how we imagine and
participate in our futures with artificially intelligent machines.
There are a number of challenges to the active and engaged
participation of actors across algorithmic, data-driven ecosystems
[53]. An essential challenge to confront is the problem of awareness,
or the recognition that a sociotechnical system even includes Al
[5, 15, 39]. Another challenge is comprehending how such capa-
bilities work. This type of understanding shapes a person’s ability
to appropriately appraise the actions and outputs of Al models.
Often signaled as interpretability, explainability, and explainable AT
(XAI), the human comprehension of Al systems is a topic that has
gained wide traction in recent years within the AI [3, 11, 19] and
human-centered design communities [1, 29, 51]. Al interpretability
is not a new topic [9, 26]. The growing popularity of black-box mod-
eling techniques lately has renewed attention to these important
concerns. Black-box modelling techniques such as neural networks
offer us incredible capabilities in the high accuracy with which they
are able to perform various computational tasks. Yet despite this
high accuracy, black-box models may learn patterns from training
data that defy common sense, and in some domains, can cause
harm. One cautionary tale is found in Caruana [8], which discusses
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a neural network used to model hospital records and identify pa-
tients at high risk of hospital re-admission for pneumonia. The
model learned that a patient’s diagnosis of asthma signaled lower
(rather than higher) medical risk. This defied clinical reality, how-
ever, since as a patient group, asthmatics need greater medical care
and monitoring. Indeed, having an asthma diagnosis meant doctors
treated pneumonia more aggressively and thus saw fewer hospital
re-admissions (a conclusion that would be intuitive to any experi-
enced medical professional). Missing from the model’s worldview
were other factors in the broader sociotechnical system, such as
doctors applying their medical knowledge and treating asthma pa-
tients differently. This case illustrates why the powerful capabilities
of Al models must be closely examined and aligned with the domain
setting and work practices where the models’ predictions are meant
to be used. In other words, there must be domain experts “in the
loop” to integrate data-driven technologies with domain knowledge
and social reality. In the words of Ross et al. [42], humans need to
feel confident that a model is “right for the right reasons.”

As others have noted, there are ongoing needs to bridge the
gap between Al algorithms and their experimental results with the
actual settings of situated end use [52]. A wider aperture is needed
to more fully understand Al explainability, one that considers the
broader ecosystem of actors who hold stakes in an Al system [7, 13,
29]. Little is known, though, about how various actors in industrial
Al projects come to understand and make sense of Al models, the
material qualities explanations take, and the tensions that arise as
situated actions unfold. Generative work is needed to understand
practices of sensemaking and explaining and the real workplace
needs and challenges actors face.

This paper investigates these concerns by reporting on a qualita-
tive interview study of individuals working on industrial Al projects
at a large technology company. This paper offers an empirical un-
derstanding of industrial Al projects, the range of stakeholders
these projects involve, and the emergent explainability practices
and concerns that arise as these projects unfold.

Across our participant interviews, we observe explainability con-
cerns related to:

e Balancing external stakeholders needs with their AT knowl-
edge

e Imbalances within teams internally

o Simplicity versus complexity tradeoff in designing explana-
tions

e Concern about revealing too much

What do actors need to know about Al models? Our findings high-
light a number of the different motivations that warrant explana-
tions about Al models:

e Understanding its inner workings

o Details about data over which model is built
Model design at a high level

o Ethical considerations baked in to the model

e Expectation mismatch

o Explanation in service of business actionability

We discuss related background work in the following section.
Then we set out the methods and details of our qualitative interview
study. We report the key themes in our findings, and we conclude
the paper with a discussion of this work’s implications.
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2 RELATED WORK

2.1 Algorithmic advancements in Explainable
Al (XAI)

Core concepts in XAI have been synthesized in various reviews
[10, 19, 35]; a comprehensive review is outside the scope of this pa-
per. At a high level, explanations are often described as being “local”
(meaning the focus is the particular predictive output) or “global”
(meaning the focus is the broader reasoning of the model overall).
Many local explanation techniques output post-hoc explanations,
meaning they provide information after the Al model is deployed.
We find many different post-hoc techniques in the XAI literature.
Much of this work relies on reduction and visualization techniques
to provide interpretability that is compatible with human intuition.
An explanation, for example, might provide text heatmaps [4, 28],
(highlighting words/tokens in the input text) to interpret text-based
models based on the underlying idea that different words have
distinctive informative levels. Another approach might be to vi-
sualize the Al models, like t-SNE [49] which plots the model into
a lower dimension scatterplot while preserving the structure of
the original datapoints, or LIME, which uses surrogate models and
sampling/weighting to make model approximations [41].

Another approach to XAI is during model design. Al models
are often called either a “white box” or “black box”[43]. White-box
models afford human comprehensability through logical expres-
sions (e.g. rules, decision trees, logistic regression, etc). In black-box
models, the relationship between inputs and outputs is obfuscated
and often not easily intelligible to humans.

Even with these advancements in this research area, it is fraught
with ambiguities that come with the association of many differ-
ent terms to express the concept of “understanding” black box
models. The literature has a constellation of interrelated and often
interchangeably used terms: explainability, interpretability, trans-
parency of models. According to authors in [18], explainability
relates to being able to convey model outputs in ways that match
human semantic concepts (interpretability) and simultaneously be-
ing complete in that description. Explanations are then needed to
do two things: be able to summarise reasons for neural networks
behavior while also providing an accurate representation of that
summary. This offers exciting new material to imagine new forms
of interactions and spur design innovations in this direction.

2.2 Designing for Human-centered Al

The explainability of Al is an inherently human-centered problem.
Explanations of intelligent systems are not new. Research commu-
nities around expert systems [48] and recommender systems [20]
have grappled with this concern before. Yet the renewed attention
to explanations is a byproduct of two simultaneous processes: (i)
growing realization of the substantial roles they play as arbiters
in many facets of human lives and (ii) the acknowledgement of
contemporary Al products’ increased complexities and interdepen-
dencies. Miller articulates the need to ground XAI techniques with
extant social scientific theories on how people explain, understand,
and create shared meaning through interaction [33]. Similarly, re-
cent work by Wang et al. [51] argues that XAI design can find
inspiration in human reasoning processes, driving future social
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science/Al synthesis. In particular, in their comprehensive network
analysis of scholarly work in the area, Abdul et al. [1] note the need
for further inquiry into real-world Al applications, which raise
complex challenges around comprehensibility and understanding.
The paradigm of human-centered explainable AI (HCXAI) invokes
scholarship to be critically reflective of implicit assumptions and
sensitive to the values and worldviews of various stakeholders [13].

Several studies have focused on building an empirical under-
standing of users’ perceptions of different explanatory features. For
example, Ehsan et al. [14] use automatically generated rationales
in natural language to present the inner workings of a black-box
model. Their analysis draws out the salience of contextual accu-
racy, awareness, and relatability in perceiving rationales as offering
adequate justification and promoting understandability. A study
of rationales in the form of decision sets (which are a bit distant
in human-likeness as compared to natural language) revealed that
rationales with newer definitions and longer mapping lists are as-
sociated with lower user satisfaction and higher response time. In
considering how much of a model should be explained, one study
cautions against the potential information overload engendered by
a transparent approach in presenting model technicalities [38]. A
large-scale experiment study on the effects of accuracy on trust in
Al noted lay users overly trust a model when its observed accuracy
is higher than their own accuracy [56]. This finding highlights the
importance of establishing reasonable expectations and communi-
cating inherent uncertainty in model predictions.

2.3 Designing Explanations using a
socio-technical lens

Throughout the history of technology in society, various theoretical
perspectives have profoundly contributed to unpacking the com-
plexities between technological artefacts and the social contexts
in which they are embedded. A common thread underlying situ-
ated action models [46, 47], distributed cognition [24], and activity
theory [36] is the recognition how contexts inform the design of
technological systems.

The contemporary Al landscape has been aptly characterized
as opaque[6] with its ever-increasing interdependencies on mul-
tiple components and algorithmic sophistication. To bypass this
opacity and to be able to thoroughly apprehend these technologies,
Ehsan et al. [13] suggest studying the HCXAI paradigm through a
socio-technical lens. This view acknowledges that technical systems
cannot be abstracted away from the heterogeneous assemblages of
social actors within which Al models are embedded. Accordingly,
explainability needs unfold emergently in situated encounters be-
tween actors and Al [52]. Al models do not exist in a social vac-
uum. An Al system deployed in the real world has a wide range
of stakeholders that extends beyond the immediate users (e.g., reg-
ulators, model developers, decision-makers, consumers) [21, 50].
Leveraging the perspectives of design practitioners, Liao et al. [29]
uncover the different user needs that emerge from different user
types. Specifically, researchers [55] showed how experienced de-
signers take on machine learning (ML) as design material. With
limited understanding of the underlying algorithms, designers rely
on a combination of abstractions about the ML capability and ex-
emplars as aids to engage collaboratively with data scientists and
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to design and develop novel interactions with ML. In addition to
charting who is involved in an AI ecosystem, researchers must
consider when those individuals become involved. Cai et al. [7]
point to the human-AlI onboarding phase as the time “when users
are first being introduced to an Al system, learning its capabilities,
and determining how they will partner with it in practice” (p. 2). We
follow their attention to the temporalities of Al encounters. How
might we think of human-AI interactions as situated in specific
industrial cycles? Conceptualizing the “Al lifecycle” can serve as a
socio-technical lens with which to explore the intersectionality of
the social and technical components of Al encounters.

3 METHODS

We conducted an interview study to understand interpretability
concerns that arise in industrial AI projects. We interviewed indi-
viduals employed at a large international technology and consulting
corporation headquartered in North America (hereafter known as
TechCorp, a pseudonym). We recruited informants via word-of-
mouth, flyers posted on internal company message boards, and
respondent-driven sampling [17].

Our empirical study focused on Al projects related to text data,
a key application area within industrial AI [25]. Natural language
is expressive. While language has an underlying grammatical struc-
ture, in use, it is rich, messy, and situated. These complexities make
computationally modeling of language challenging. There is not
only the intended meaning of the utterances that must be con-
sidered, but also context sensitivity, subtle markers, non-literal
cues, and other linguistic devices (presenting social and emotional
intelligence), to name a few.

To capture a variety of experiences and perspectives across text
analytics projects, we recruited broadly and required each infor-
mant to have worked on a text project in some capacity and to
have explained to another person how Al applications for text work
(these explanations could have been delivered internally to project
team members or externally to clients). Accordingly, our informants
represent a range of roles across a variety of industrial Al-driven
projects. Table 1 provides details about the participants included in
our sample. In this context, there is overlap in the work practices
of those in the researcher and data scientist roles, and the different
titles reflect different organizational/reporting structures. While
both roles leverage known/existing AI/ML algorithms and invent
novel ones, researchers also work on client products/projects. It is
important to note that our study does not include direct interviews
with Al end-users or clients. Undeniably, including real users would
have tendered increased ecological validity; yet their enrollment
was practically constrained by their access (given the proprietary
nature of TechCorp R&D projects). Second, targeting individual
employees from TechCorp allowed us to take a focused approach
to our subsequent data collection and analysis.

In total, we interviewed 30 individuals during August and Sep-
tember 2019. Interviews took place in person or via a web-based
video call and typically lasted one hour each. We began by asking
participants about their job roles and for a description of the AI/NLP
projects from which they could draw AI explanation-oriented ex-
periences. We asked them to reflect on these (including but not
limited information about the stakeholders in the explanations, the
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Table 1: Detailed description of the interview participants including their role, gender, and particular NLP project applications

ID Job role Gender Al task and technology application domain

1 Researcher (AI/NLP) M Entity resolution/author disambiguation in medical publications, articles

2 Researcher (AI/NLP) M Debugging tools for AI/NLP researchers

3 Technical Strategist M Various (Q&A, knowledge base population, standardization)

4 Researcher (AI/NLP) F Classification of medical documents

5 Technical Strategist M Entity resolution in healthcare domain

6 Researcher (AI/NLP) F Analytics for service pricing

7 Data Scientist F Classification of statements in legal contract documents

8 Researcher (AI/NLP) M Document (RFPs, emails, chat messages) analysis for discovering actionable statements
9 Researcher (AI/NLP) M Topic modelling, embeddings for document similarity, search ranking, classification
10 Researcher (AI/NLP) M Conversational systems/human-in-the-loop planning

11 Data Scientist M Named entity recognition for financial application

12 Researcher (AI/NLP) M Text generation for HR application

13 Technical Strategist M Pharmacovigilance/drug safety

14 Researcher (AI/NLP) | Researcher (HCI) M Conversational quality of chatbots/human factors in Al

15 Data Scientist | Technical Strategist F Classification and clustering for skills inference and talent management

16 Product Manager M Al products for document analysis (e.g., legal contracts, invoices, purchase orders)
17 Data Scientist M Data mining (social media) - food safety and supply chain

18 Data Scientist M Sentiment analysis models for 10 languages (e.g., English, Korean, Hebrew)

19 Researcher (AI/NLP) | Researcher (Infoviz) M Gamification of Al |[Visualization tools for black-box models

20 Researcher (AI/NLP) F NLP models for different domain and data types (e.g., finance, legal, call logs)

21 UX Designer F Human-in-the-loop tooling UI for domain experts in financial domain

22 Data Scientist F Customer complaints in call logs, customer reviews

23 Researcher (HCI/Infoviz) M Visualization tools for Al researchers

24 Researcher (HCI/Infoviz) F Sentiment analysis to predict employee engagement

25 Data Scientist M Dialog system designed to track and monitor supply chain infrastructure

26 Product Manager M Monitor performance of deployed AI

27 Researcher (HCI/ Information Viz) M Visualization tools for Al researchers

28 Product Manager | Technical Strategist M Al products for document analysis (e.g., legal contracts, invoices, purchase orders)
29 Researcher (AI/NLP) M Language model development for drug discovery

30 UX Designer F Interface design for Al products in financial domain

content that needed to be explained, the method by which the ex-
planation was delivered, and the challenges that cropped up in the
process of explaining AI models). We followed a semi-structured
interview approach [37] that allowed informants to guide the dis-
cussion and contributed to an interactive exploration of our topic.
During the interviews, many informants also showed us artifacts
(via screenshare) that they had used to explain models (e.g., slide
decks, scientific papers, dashboards, and infoviz apps). All inter-
views were audio-recorded and transcribed; we also took notes
during these interviews. We analyzed the interview transcripts and
notes following an iterative, thematic approach typical in affinity

mapping [22].

4 FINDINGS

We frame our findings around the Al lifecycle, the broader complex
process responsible for the development of any given Al prod-
uct/service within an enterprise context. These findings emerged
from participants’ responses about their information needs: Al
touchpoints, model development, model validation during proof-
of-concept, deployment, and ongoing considerations with respect
to explanations apparent throughout the Al lifecycle. Figure 1 sum-
marizes our findings.

The issues surfaced by the participants are relevant to any client
engagement, even though our informants focused on language pro-
cessing systems. Some informants provided some examples specific
to text processing by referencing particular NLP tasks related to
entity classification, while others drew out concerns that were more
overarching. We report on and elaborate these findings below.
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4.1 Al touchpoints

4.1.1 Models’ locations. Al models sit at different points within
a sociotechnical system and a model’s “location” shapes the types
of explanations that are needed and for whom. Where the model
sits within the ecosystem is also case-by-case and dependent on
where that task fits within the overarching system/service. For ex-
ample, in one project on which I-01 and I-05 collaborated, entity
resolution was a central part of the service to pharmaceutical com-
panies (identifying influencers in the medical domain). As such,
the Al model sat “close” to end-use. In another project, however, a
model handling NLP task of classification was further away from
the end-use service (a platform that helped identify obligations
in legal contracts). An AI/NLP researcher working on this project
shared, “We were working on a classification task, yes. But it is in
service of some downstream task, not an end in and of itself. That’s
extremely important to remember, it’s always for some downstream
task” (I-20).

4.1.2  Who interfaces with Al models? Our informants described
how discussions about AI model technicalities take place amongst
individuals with different backgrounds. A technical strategist re-
marked, “Not all AI models are end-to-end. Some are directly human-
facing and some are embedded in the enterprise pipeline. Depending
on where they fit in, there could be different personas” (I-28), listing
trainer, developer, and end-user personas as those that are com-
monly referenced during client discussions. One approach that
five of the informants (I-01, I-02, I-04, I-07, I-20, I-22) reported
utilizing exposes what the black-box Al model has learned using
linguistic expressions (i.e., forms of predicates or linguistic rules).
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While these logical expressions provide comprehensible explana-
tions to those researchers developing the model (and oftentimes
the subject-matter experts working closely with them), they pro-
vide a far-too-fine-grained level of detail for other stakeholders.
Researchers I-01 and I-12 brought up product teams (within the
company) that do not drive technical aspects of the Al model during
development yet are active participants in co-producing the desired
Al product/service.

Our informants’ responses highlight how even beyond TechCorp,
an Al product/service might interface with different personas, re-
sulting in different explanatory needs. Referring to a project in the
financial sector, a project manager mentioned the different individ-
uals who could be interacting with the Al tooling, noting, “Initially,
we had a machine learning operations kind of persona in the client
data science team who is supposed to be relatively up to speed in what
is involved in the caring and feeding of an AI model” (I-26). Recount-
ing the lack of such a definitive job title in subsequent engagements
with the same client, I-26 mentioned that the responsibility for
the model later fell on the IT operations team personnel, who had
limited experience with Al models.

Other times Al product rollouts were accompanied by a more
nuanced segment of model explanation-seekers. For example, the
aforementioned product manager (I-26) mentioned “[the] model
developer (data scientist), model owner (who is in line with the busi-
ness), [and] model validator (risk management personnel familiar
with regulatory requirements and policies)” as potential explanation-
seekers.

We found particular notions of AI model explanations (e.g., those
that are about how the model is built, why an output is manifested
the way it is) appearing throughout the Al lifecycle and the related
Al product/service within which the model was embedded.

4.2 Model building: conceptualizing and
developing Al-based technical assets

An Al-driven service engagement begins with the development of
initial model capabilities by model developers based on business
needs and requirements. This initial stage entails rapid iterations
and exploration to develop technical assets that serve as base mod-
els. Various scenarios prompt explanations at the development
stage.

4.2.1 Understanding inner workings. For one, early in the Al life-
cycle, model architects and developers primarily seek explanations
to obtain a sense of why a model is predicting what it is and what
linguistic features it might have learned. In describing an Al project
on drug discovery, an AI/NLP researcher (I-29) echoed the nat-
ural curiosity that is inherent to researchers and how this trait
influences researchers’ desire to obtain a detailed explanation dur-
ing development, saying, “All scientists are skeptical people, they
Jjust don’t want to be given an answer; they want to explore.” Other
informants shared their own thoughts about models’ inner work-
ings. One researcher noted, “Explanations can be useful for NLP
researchers to explore and come up with hypotheses about why their
models are working well” (I-19). An AI/NLP researcher working on
deep learning-based text generation Al models added, “Low-level
details like hyper-parameters would be discussed for debugging or
brainstorming (amongst the research team).” (I-12).
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A recurring theme in our informants accounts was the notion of
actionability as a motivation during model development and refine-
ment efforts. During conceptualization and the initial development
cycles (even prior to the release), explanations during “model selec-
tion” might give model trainers/developers a useful glimpse into
the particularities mentioned a data scientist (I-18), as well as aid in
‘comparing model results triggered by changing the underlying dataset
or model drift,” another data scientist (I-7) pointed out. Researchers
often develop in-house or use existing explanatory visual tools to
identify, track, and mitigate adverse model behaviors (e.g., inherent
gender bias in which a model selectively associates the pronouns
“he/him” with doctors and “she/hers” with nurses). Demoing a visual
tool that he had developed to understand how a black-box language
model worked for a specific domain, one researcher shared, “If you
know the layer and the head then you have all the information you
need to remove its influence... by looking, you could say, oh this head
at this layer is only causing adverse effects, kill it and retrain or you
could tweak it perhaps in such a way to minimize bias” (I-19).

4.2.2  Anticipating user questions. In the wings, researchers engage
in deliberate and focused thought surrounding different questions:
“What XAI algorithms should I implement?...what questions might
the user ask? And do I have the XAI technical capability to provide
that explanation?” are some of the questions raised by an HCI
researcher (I-23). Another researcher (I-12) reported proactively
anticipating user questions such as “How have you generated these?”
in reference to an Al-driven HR application he had helped develop
that auto-generated boilerplate language for job descriptions.

4.3 Model validation during proof-of-concept
demonstration

Next, these initial Al-based technical assets serve as experimental
proof-of-concepts, a base model which can then be “built on top
of” and extended via customized learning for a particular client’s
industrial context. This “building on” approach requires explaining
the contours of the particular base model, as one researcher (I-20)
laid out. Such an explanation involves describing the data on which
the base model was trained, what the model can do, and what the
model cannot yet do, and then segueing into a discussion about
the client’s particular data, task, and business process/problem.
Mapping the model’s current functionality to the client’s goals also
involves discussing the resources (e.g., time, personnel, compute)
the client is willing to devote to the project.

4.3.1 Details about data. An important part of discussions with
clients revolves around data, and this was a dominant theme through-
out informants’ accounts. Discovery-motivated Al product offerings
might involve incorporating novel sources of data (e.g., social me-
dia data) into an existing business process, which in turn requires
explanatory articulation work. For example, one data scientist (I-17)
spoke of a project working with a public health agency in mon-
itoring food safety/food poisoning cases. In the existing process,
food safety inspectors would review reports from calls to a food
poisoning helpline, during which the operator would be able to
collect detailed information from the person reporting illness. The
Al project involved leveraging signals from social media posts to
infer food poisoning cases. Although this allowed for a wider net
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Al lifecycle touchpoints

Model development

Model in-production

Audience
(Whom does the Al model

interface with?)

Explainability Motivations

(Informational needs)

Model developers

- Peeking inside models to

understand their inner workings

- Selecting the right model

- Improving model design

(e.g., how should model be

Data Scientists
Product Managers
Domain experts
Business owners/users

IT operation engineers

- Characteristics of data

(proprietary, public, training data)

- Understanding model design

- Ensuring ethical model

development

Model developers

Data Scientists | Technical Strategists
Product managers | Design teams
Business owners/users

IT operation engineers

- Expectation mismatch
- Augmenting business workflow and

business actionability]

retrained, re-tuned)
k

feedback feedback
Y

Ongoing considerations
surrounding explanations

throughout model lifecycle

Collaborating with personnel having different expertise and differing levels of Al knowledge
Simplicity vs. complexity dilemma in presenting explanations

How much to explain - proprietary model vs, details to help develop a full understanding of the model

Figure 1: Audience and motivations for explainabilty as they appear in the Al lifecycle

(a person might not call a helpline, but they might post about their
upset stomach on Twitter), it meant the data presented to the in-
spectors was sparser and noisier than they were used to. Inspectors
had to cross-validate these with other data sources.

The data that are available (to train a model) and the data on
which the client is hoping the model will be able to offer predictive
outputs are key questions to clarify from the outset. For example,
as in the case of a researcher who was working with academic
scholars and doctors in a medical school on analyzing clinical doc-
uments. She shared: “Domain experts want to know more about the
public medical dataset that the model is trained on to gauge if it can
adapt well to their proprietary data” (I-4). Meanwhile, another data
scientist shared, “The client’s data collection is not defined for the
purposes of the ML project. My clients have done their core business,
and now they want to reuse their data for new functionality in new
and clever ways” (I-22). But this data re-use is not self-evident, it
requires careful dialogue with clients on goals, expectations, and
resources. Often, clients will begin conversations with a speculative
“Well, what can the AI do?” to which an AI/NLP researcher described
responding with, “Well, what kind of data do you have?” (I-20).

4.3.2  Model mechanics at a high level. Bringing an Al product/
service to life is a joint process between domain experts and model
developers. However, information-sharing across a domain and
model development undergirds this joint process. Subject-matter
experts describe to model developers the technicalities of their
domain; the onus of explaining the model’s functioning and its be-
havior to the experts falls on the model developers. Our informants
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emphasized the shifting focus in the explanations that they offered.
One AI/NLP researcher described, “Initially we presented everything
in the typical Al way (i.e., showing the diagram of the model). We
even put equations but realized this will not work... After a few weeks,
we started to only show examples and describing how the model works
at a high level with examples” (I-4). In this quotation we can see a
recognition of the need to respect the expertise of each member of
the collaborative service engagement.

Describing Al-based collaborations in the medical/life sciences
domain, a technical strategist said, “If we have to go in and teach
doctors Al in order for these systems to work, we’ve lost the battle”
(I-03). He continued, explaining that domain users should be able
to use the model’s output in a context that is meaningful to their
workflow. He noted how “underneath [the model] the Al is hap-
pening and they don’t necessarily need to understand how all that
works. Someone needs to understand how it works and it should be
explainable to the SME [subject-matter expert] if they need it. It’s
about appropriateness of the task” (I-03).

4.3.3 Ensuring ethical considerations during model development.
During the initial model development phase, clients and their le-
gal teams provide high-level privacy requirements specific to their
domain. These requirements feed into data pre-processing steps dur-
ing which model developers generate masks and filters for personal
data. Our informants discussed how in the proof-of-concept stage,
model developers and associated product managers engage in trans-
parent and open discussions about this data preparation, including
the conceived mapping between privacy/security requirements and
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data masks and filters to ensure appropriate legal compliance. Here,
clients raise questions pertinent to regulatory issues with respect to
the Al model. One product manager recalled a client asking, “How
do we know the model is safe to use? ... Users will ask questions about
regulatory or compliance-related factors: Does the model identify this
particular part of the GDPR law?” (I-16).

4.4 Al product deployment, monitoring and
maintenance

Explanations, of course, are also warranted when a model’s behavior
“in production” needs to be understood. Our informants’ accounts
are captured in two different themes: expectation mismatch, and the
role of explanations in providing clients with actionable insights.

4.4.1 Expectation mismatch. An HCI researcher aptly character-
ized “expectation mismatch” as a common explainability scenario
(I-27). An expectation mismatch is when the model’s prediction
differs from what the user expected the prediction to be. In the
context of a client’s business problem (e.g., coming up with a list
of top 100 person recommendations who study non-small cell car-
cinoma in the European Union), one of the technical strategists
described an Al service that uses entity resolution (a fundamental
NLP task). The informant described this service as one that aug-
ments the current manual process of creating a list of key opinion
leaders in the medical domain. Customers seek explanations when
some names they expect to see on the list are not captured by the
model. Referring to an erroneous name consolidation process, the
informant explained, “Data quality issues might arise resulting from
expectation mismatch, but the list of recommendations must at least
be as good as the manual process ... If they [the clients] come back
with data quality issues ... we need to come back with an explanation
of what happened” (I-05). Another technical strategist indicated that
explanations help in distinguishing outputs manifested through
“model mistakes versus decision disagreements” (I-28). Still another
technical strategist added, “In human experience, when we are sur-
prised, our expectations are violated. That is when we need some type
of explanation. If we see or experience what we are expecting, then
we just continue on without taking much note.” (I-3).

4.4.2  Explanations in service of business actionability. A dimension
that shapes the appropriateness of an explanation is not only its
level of technical detail but also its relation to some actionable item
in the business realm. Like actionability during model development
and improvement, actionability as it ties to business decisions was
a key notion across informants. To distinguish, we label this “busi-
ness actionability”: the idea that explanations are provided in such a
way that ties their insight to the broader business workflow within
which they are provided. In our conversations with informants, we
saw explanations as closely intertwined with business actionabil-
ity, ultimately propelling a model’s integration into the business
workflow.

One data scientist (I-22) used the language of “mutable” and
“immutable” variables to describe this concept. She brought up
questions that client often ask her, “Is the feature it is pointing out
something I can change in my business? If not, how does knowing that
help me?”. Although the example she used to illustrate this point was
not specifically related to text data (the number of dependents listed
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on a loan application), it demonstrates that explanations need to be
tied to the overall business process if they are to provide meaningful
guidance on what should happen next. The mutable/immutable
concept also came up in other informants’ accounts. For example,
a product manager (I-26) described how it can be very difficult
for users to understand compound variables, that models use in
their decision making process because they do not translate to
anything meaningful in the business domain. He went on to discuss
the need to differentiate between explanations that imply some
business action (i.e., are mutable in the real world). To generate
actionable items, means injecting domain knowledge about which
features are indeed combination-worthy and hang together. This
could be accomplished via a pre-processing step, working with
subject-matter experts and domain experts to understand what is
indeed changeable and what is not for a given domain context.

4.5 Challenges and concerns in collaborations
while engaging in explainability

Having explored the different forms of explanations through the

lens of the Al lifecycle, we now turn to the various considerations

and dilemmas our informants described. Our conversations sur-

faced some tacit, often overlooked sentiments surrounding Al-based

collaborations across TechCorp.

4.5.1 External stakeholders and their informational needs. Infor-
mants recalled striving to provide the appropriate level of expla-
nation to various stakeholders. Except for a few projects in which
the Al product/service was designed specifically for technical users
(e.g., tools for data scientists), there was a general sense among
informants that there was a line beyond which explanations would
be “too technical” for those who were not directly involved in the
model development process. Furthermore, informants indicated
that the line between what is “too technical” or “just technical
enough” depended not only on the task and business case but also
individual backgrounds and levels of technical Al literacies of the
team. Describing a use case to leverage Al techniques for document
retrieval, an NLP researcher noted that “Tt always requires some
creativity to explain technical things to non-technical people” (I-09).

What constitutes an explanation is highly contextual and situated
in the AI/ML knowledge that stakeholders bring. According to
one designer, “We have to balance the information you are sharing
about the Al underpinnings, it can overwhelm the user ... They aren’t
dumb; it’s not that at all. They are just looking at it from a different
perspective, from a business perspective. So they are only concerned
with numbers or results as they relate to the business problem” (I-21).
One AI/NLP researcher drew upon his experience in providing
explanations: “Depending on who is at table, explanation-oriented
discussions could be only about precision/recall numbers” (I-8). In
contrast, a product manager mentioned how explanations might be
better delivered without performance numbers because “numbers
can be a point of discomfort” (I-16).

We also observed the deliberate effort that model researchers
need to make to debunk the myth that Al is magic. A data scientist
mentioned that to some clients, “TAI] may seem like a magic box that
can do anything” (I-22). An AI/NLP researcher expressed frustration
with this notion of Al remarking, “The whole idea that this is magic
is a sad by-product of all the hype ... None of this is magic. It’s just



DIS °21, June 28-July 2, 2021, Virtual Event, USA

statistics. Deep learning is all derivatives; that’s calculus. Isaac Newton
says hi! But it’s hard to get people to understand that because if you
don’t understand something, it seems like magic. But then if it doesn’t
work well, you need to understand why” (I-20).

4.5.2 Concerns within team personnel. In addition to the explana-
tory articulation work that happens with clients, our interviews
also evoked nuanced thoughts about how the informational needs
of internal team members sometimes are purposefully left unmet.
One AI/NLP researcher said, “High-level concepts (what types of
information the model considers and how it bootstraps off informa-
tion organization schemas like MeSH”) is sufficient for product teams,
along with accuracy” (I-01).

Offering a more nuanced reaction, one product manager (I-16)
brought up Al's “brutal, steep learning curve” that he had to over-
come to be able to intelligibly converse with researchers and data
scientists with whom he was working. According to one researcher,
such knowledge gaps in team personnel elevate tensions between
AI/ML researchers and other team members who might feel a “Joss
of control,” making the “support and maintenance of explainable
models hard” (I-08).

Reflecting on an ongoing project, a designer working on the
interface of a human-in-the-loop tool to support classification of
entities in documents (I-30) described the struggle to understand the
linguistics and the disconnect she experienced from the Al model for
which she was designing. I-30 shared her screen to demonstrate the
Al tooling to which she was referring. ‘T don’t know how that works,”
I-30 said and described her uncertainty about which elements the
design should incorporate.

4.5.3  Simplicity versus complexity. A central trade-off raised in
many interviews that is very important for XAl is the idea of “sim-
plicity versus complexity,” as one researcher (I-27) put it. He de-
scribed how “the design space for (explaining) models to end users is
in a way more constrained than for expert users. In certain respects,
[it is] the hardest design challenge that you take on because you have
to assume that you have to put in a very, very very shallow learning
curve. It cannot be as steep as it would be for an expert” (I-27). De-
scribing a gamification project to explain black-box models, another
AI/NLP researcher echoed this necessary focus on clear explana-
tions, remarking, ‘It is hard to communicate without using words
like ‘activation’ or ‘clustering™ (I-19).

Explanations have been manifested using visualizations in the
XAl literature. Different Al expertise levels, however, shadow their
usage in real-world projects. One product manager described how
a very well-known explainability technique (LIME [41]) was not
readily usable with business users, saying, “In terms of how they
are visualized, originally [we] just had a graphic representation of
LIME with a percent and the feedback we got back was that was too
complicated. Business users found that confusing, didn’t add up to
the confidence rating/interval. So they asked for just a text summary”
(I-26).

4.5.4 How much to explain. Another often overlooked, practical
concern informants raised is how much to explain and the contours
surrounding that explanation. On one hand, for AI models to be
truly incorporated into workflows, it is imperative that users de-
velop a comprehensive understanding of them. On the other hand,
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there are concerns about disclosing too much about proprietary
Al technology. According to one technical strategist, “We never sit
down and explain” (1-05). An AI/NLP researcher remarked, “We
never get into the weeds (with clients)” (I-8). Referring to a project on
building sentiment models, a data scientist noted, “[The] developer
has to provide all these constraints but also needs to balance without
revealing too much about how it [the model] actually works” (I-18).

Furthermore, explanations can lead to unwarranted situations if
they reveal too much. “Explanatory features can reveal identities (e.g.,
easily inferring employee, department, etc.),” mentioned I-24, an HCI
researcher, while recounting one project analyzing a workplace
social forum to predict employee engagement in an organization.

5 DISCUSSION

Human comprehensibility of Al has been a topic of renewed at-
tention and investigation in recent years as the use of black-box
models becomes more common. This paper contributes to these
conversations by offering an in-depth, qualitative view of indus-
trial Al projects and the in situ sensemaking practices that unfold
in these projects. Our approach offers us a set of complementary
points-of-view on the topic of interpretability and explainabilty
of Al models. Our inquiry answers the calls set out in [1, 13, 52],
filling important gaps around our understanding of real-world ex-
plainability concerns. At the same time our work raises questions
in need of further investigation.

As the accounts of our informants reveal, real-world industrial Al
projects involve diverse collectives of actors. Each person brings to
the team their own technical literacy/background and comfort level
with the technical underpinnings of complex technologies like AL
They each, also, have their point-of-view and motivating ambitions
vis-a-vis the project/service under development. For researchers
and data scientists, an Al text project represents a challenging
research problem; for product managers and technical strategists,
it represents an opportunity to shape industries and deliver cutting-
edge services; and for designers, it represents a complex translation
problem from user needs to design elements. Although we have
not interviewed the customers our informants serve, from these
accounts we are able to gain a view that their interactions with
customers are collaborative and framed by the broader services
relationships with which they emerge; such insights provide further
support for the need to think of explanations as iterative, interactive,
and emergent, rather than a static quality of model (explainable or
not).

This paper brings attention to explainability practices in indus-
trial Al projects, specifically practices in relation to Al model touch-
points, the multitude of ways in which explanations become war-
ranted, the in situ nature of the explanations, how explanations
of models aid in resolving expectation violations, and how action-
ability is closely tied to models’ explanations. This analysis also
acquaints us with the different explainability challenges and con-
straints that dwell within an entanglement like the AT lifecycle.

5.1 The Al lifecycle as a lens for XAI design

XAl research within the technical Al community focuses on a host
of algorithmic techniques, but rarely addresses explanations in the
sense of envisioning them as occurring at different Al touchpoints.
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A narrow focus such as this is likely to lead to designs that are
self-consistent in functionality, but fail in practice because they do
not consider the how or the why of situated explainability practices.

In this paper, we have examined how the explanations our infor-
mants described were situated in specific stages of the Al lifecycle.
Explainability needs during model development differ from those
that emerge during model validation, model deployment and so
forth. Our informants’ accounts cast in sharp relief the different
explanations sought during these stages - debugging and brain-
storming during initial model building; data, high-level model un-
derstanding, and ethical considerations during model validation;
expectation mismatches and business actionability during Al de-
ployment.

Our use of the “lifecycle” metaphor signals an organic and situ-
ated ecosystem. Using this as a design metaphor invites us to trace
how actors and concerns circulate across the Al lifecycle - such
tracings help sketch the range of actors for whom explanations
might arise or be owed and how those concerns move and morph
along the lifecycle. Further, in mapping out the Al lifecycle and
where and how different actors reside within it, assumptions may
also be interrogated to reveal underlying values and norms on who
and what is made (in)visible in our metaphors of complex systems
like AL Who holds a stake in understanding this Al model’s out-
puts? Where do they come to interface with that model, along the
Al lifecycle? How do those interactions change over the course of
a project’s lifespan?

Using the Al lifecycle as a design metaphor for the XAl realm nat-
urally evokes the cycles involved in software engineering (SE). In
the SE development lifecycle, the focus is on building software that
is primarily deterministic in nature. In contrast, Al and ML models
are inherently probabilistic. Therefore, uncertainty lurks in the Al
lifecycle. But this uncertainty is not always a negative element, it
can be generative for design, as recent work by Benjamin et al. [27]
explores. That work introduces a conceptual vocabulary around Al
uncertainty to tease apart ways in which that uncertainty might
serve as a design material. One salient point from this work is to
note that uncertainty is just “part and parcel” of how Al systems
work: a predictive model’s raison d’etre is taking action (i.e., assign-
ing a predictive label) amongst uncertainty (i.e., real-world data
inputs). Making plain this inherent uncertainty then raises design
questions around if, how, and when other actors come to encounter
this uncertainty - and how those encounters may be scaffolded
through design.

In adopting a lifecycle view on Al, we must remember that Al
models are actors in the sociotechnical sense. This means models
have forms of material agency and those agencies, along with others,
play a role in shaping interactions [27, 32, 40]. We can see this
in forms of “machine teaching”, where humans interact with and
“teach” the model by providing feedback on data examples the model
offers [32]. But material agency can also be a provocative design
prompt, challenging our tacit assumptions of human primacy in
sociotechnical systems. For example, Reddy et al. [40] propose
design methods that speculate: what if an AI model had an ethical
agenda? Applying ethical and moral valence to machine action
in this way forces us to confront our entangled and precarious
position as ethical actors - together with nonhuman actors - in
complex sociotechnical ecosystems.
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5.2 The relationship between local
explanations and a preceding, shared
understanding upon which to build

Overwhelmingly, the XAI literature focuses on providing local ex-
planations — that is, explanations about a specific input/output.
Why did the model take this action given this input? A focus on
the local aligns with many of the sensemaking practices we un-
covered during our empirical study. But our study also reveals the
relation of individual, instance-level explanations to higher-level
understandings of the Al system and lifecycle. Informants talked
of providing a “high level” overview, which offers a more macro-
and meta-level explanation of the Al model’s technical mechanics.
This high-level overview led to a shared understanding of a model’s
capabilities in relation to the data at hand and possible avenues
for model enrichments or customizations. This shared understand-
ing was achieved by framing high-level explanations, with specific
customer business use cases. What are we doing here? How is this
going to support your business? The business context is the specific
“landscape” upon which every industrial Al project takes place; this
industrial landscape frames what explanations are needed and the
actionability they ought to signal to users.

In many of our informants’ accounts there is a temporality and
sequencing — a high level overview helps to create a shared under-
standing at the start of an endeavor, negotiates reasonable expecta-
tions on outcomes and performance, and lets the Al development
work proceed. Then as the work progresses, and Al actions are
seen on individual outputs, the need for further detailed explana-
tions arise. Such temporal ordering — and the common grounding it
builds upon - offers an avenue for future work to explore. How can
shared understandings amongst stakeholders in Al model ecosys-
tems be seeded? Yang et al. [54] provide useful insights here, noting
how various AI/ML topics and themes can be used to spark fruitful
design dialogues. We must also take into account individuals’ Al
literacy [30]. How can Al design practice accommodate ecosys-
tems with diverse Al literacies as Al development work progresses?
These are open questions.

5.3 Expanding the ambit of explanations

Characterizing Al models as “explainable” or not is a simplistic
view of what it means to understand Al. Human comprehension
of these complex systems emerges from the various conversations
between model builders/product managers and business clients;
through these situated and unfolding dialogues, parties develop
a shared understanding about a particular Al project [23]. As we
have seen, explanations are not “one-size-fits-all”, and their form
and function depend on the context within which explainability
needs emerge.

Our empirical findings surfaced efforts to demystify the “magic”
some associate with Al For stakeholders who are removed from the
nitty-gritty of Al model development, equating Al with magic im-
plies that its capabilities are spectacular, far too impressive, and can-
not be subject to examination. Science and technology studies (STS)
literature has long looked at the ways in which humans attribute
technology with magic [45]. As the Arthur C. Clark quote goes:
“Any sufficiently advanced technology is indistinguishable from
magic” But, as Gell [16] notes, an ascription of magical prowess to
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technology makes it seem as though technological development is
costless simply because its technical details are hidden from view or
often made irrelevant to the outputs it produces. Rendering tech-
nological cost invisible can be dangerous, especially in assessing a
technology’s attendant risk. Risk is a socially-constructed concept,
shaped by cultural values and norms, as Luusua and Ylipulli [31]
note: “risk is a design decision like any other” The risks around
Al must be made visible in the design process - doing so not only
raises awareness around risk (moving beyond the view of Al as
costless magic), it also opens up risk as a site of possible design
intervention. How might we design the risk around the techno-
logical artifacts and services we are building? Dove and Fayard
[12] offer insight here - exploring the metaphor of monsters and
monstrosity in the Al design process. Making visible and material
the socio-cultural values, assumptions, and beliefs around Al enacts
a richer, messier design practice, capable of wrestling with- and
trying to intervene-in our monstrous sociotechnical ecosystems.

We make note, though, of trade-offs in trying to break through
AT’s black box. In our study, we uncovered emergent and oppor-
tunistic strategies used by researchers to make Al accessible to
collaborating partners (e.g., showing the client the model diagram
with equations in the beginning and then changing course to show
the client examples of how the model behaves). These strategies
are suggestive of a perplexing dilemma that confronts the project
team: coming up with explanations suitable for domain experts
and business clients, while also building an overall mental model
for clients (understandability) that does not leave out crucial infor-
mation about the model (completeness). Very recent work in this
space has suggested different visualization techniques that can be
customized to a person’s desired level of detail and cognitive load
[2, 57]. Allowing for users to tweak explanations to specific needs
and instances while taking into account cognitive load considera-
tions can help users form accurate, yet flexible mental models.

This paper extends this prior work by bringing these issues in
conversation with a sociotechnical perspective. Our work offers
emergent considerations to further the XAI design space: (i) enrich-
ing ongoing dialectical exchanges between stakeholders by using
rich artifacts (e.g., Model Cards [34]); (ii) seeking alignment with a
given model’s location in the Al lifecycle (e.g., embedding the pro-
gressive disclosure principles [44]); (iii) catering to wide variations
in stakeholders’ Al literacies; (iv) minimizing expectation violations
during deployment (e.g., leveraging pseudo learning-by-doing); and
(v) balancing technical details with high-level understandings as
appropriate to the domain and task at hand.

5.4 Designing for service touchpoints

As we have seen, explanations are tied closely to actionability. What
is this information telling me, what can and what ought I do with it?
For Al engineers and researchers, explanations are useful in debug-
ging and probing model behavior. On the other hand, for customers
touching Al models at a different part in the Al lifecycle, explana-
tions are needed to help create an understanding of the model’s
limitations and boundaries (the training data’s point-of-view) and
the impact it would have on the business context. Rather than focus-
ing myopically on performance measures alone, it’s about matching
the capabilities of Al to business needs and thoughtfully embedding
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those capabilities into human-in-the-loop processes to ensure key
business objectives are met. In our informants’ accounts, we can see
how matching Al capabilities to situated business settings is an on-
going, collaborative process between a number of stakeholders. This
echoes recent work by Hong et al. [23], noting how interpretability
involves cooperation and trust-building among stakeholders. Al
models in real-world industrial projects are encountered within a
services frame; they are embedded within a broader sociotechnical
service system and are not artifacts taken “off the shelf” Models are
not “plug and play” but instead a site of ongoing sensemaking and
collaborative learning amongst stakeholders. Al engineers must
continually learn and stay “up to date” on the model as changes
and tweaks are made; product managers must gain a fluency in
algorithmic techniques to lead the team strategically; designers
and strategists must iteratively design and re-design interactive
experiences. In pointing to the dynamic, lively encounters amongst
these stakeholders — and the shared understanding they ongoingly
strive to create and maintain — we hope this work offers insights
for future research into the collaborative and situated dimensions
of Al sensemaking and explainability.

6 LIMITATIONS

This empirical study with informants working on Al projects offers
a unique vantage point from which to understand how explanations
are constructed and shaped in real-world projects. Here, too, we
qualify the findings of our study and acknowledge our limitations.
First, in this study, explainable Al was characterized specifically,
using text-based projects. Explainability practices in other data
realms might differ. While we were able to capture the views of
corporate research and product teams (e.g., HCI researchers, data
scientists, designers, technical strategists, and product managers),
our research does not directly reflect the views of client end-users.
Capturing client end-users’ accounts and opinions around explain-
ability concerns is an important part of the equation here, but our
access did not allow for interviewing people in these types of roles.
Despite this limitation, our in-depth interviews with individuals
in a range of professional, corporate roles in industrial Al projects
make our findings quite rich and offers (if obliquely) a view to client
end-users’ concerns, as they are experienced and recollected by
project members.

As mentioned before, all informants were working on projects at
a single corporation, TechCorp. Specific organizational processes
and organizational cultures no doubt shape explainability practices
in industry. We anticipated this problem and to help address it,
we made deliberate efforts to recruit participants across TechCorp
organizational departments (thus working on different product
offerings). Additional work is needed to more fully understand
the organizational dimensions of explanation practices, which we
hope this paper meaningfully motivates future human-centered
XAl research.

7 SUMMARY AND CONCLUSIONS

In this paper, we have taken up the topic of explainable Al in real-
world enterprise projects. Our study provides an in-depth, qualita-
tive view of text analytics projects at a large technology corporation
and how sensemaking practices unfold in these projects. We have
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described and illustrated these practices with examples from in-
formants about how and when explanations arise. Our findings
highlight the nuanced efforts at model explanations that go beyond
algorithmic artifacts like performance numbers. In doing so, our
study broadens the typical XAI-focused gaze to consider not only
Al models in and of themselves, but also with whom the models
might be interfacing, at what location along the Al lifecycle, and
for what purpose. This, of course, only begins to chart the complex,
sociotechnical ecosystems that we find around AI models. Ongoing
cartographies are needed to further deepen our Al design praxis as
it continuously unfolds in contemporary life.
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