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ABSTRACT
Enterprise search is challenging for several reasons, notably
the dynamic terminology and jargon that are specific to the
enterprise domain. This challenge is partly addressed by
having domain experts maintaining the enterprise search en-
gine and adapting it to the domain specifics. Those admin-
istrators commonly address user complaints about relevant
documents missing from the top matches. For that, it has
been proposed to allow administrators to influence search
results by crafting query-rewrite rules, each specifying how
queries of a certain pattern should be modified or augmented
with additional queries. Upon a complaint, the adminis-
trator seeks a semantically coherent rule that is capable of
pushing the desired documents up to the top matches. How-
ever, the creation and maintenance of rewrite rules is highly
tedious and time consuming. Our goal in this work is to
ease the burden on search administrators by automatically
suggesting rewrite rules. This automation entails several
challenges. One major challenge is to select, among many
options, rules that are “natural” from a semantic perspective
(e.g., corresponding to closely related and syntactically com-
plete concepts). Towards that, we study a machine-learning
classification approach. The second challenge is to accom-
modate the cross-query effect of rules—a rule introduced in
the context of one query can eliminate the desired results
for other queries and the desired effects of other rules. We
present a formalization of this challenge as a generic com-
putational problem. As we show that this problem is highly
intractable in terms of complexity theory, we present heuris-
tic approaches and optimization thereof. In an experimental
study within IBM intranet search, those heuristics achieve
near-optimal quality and well scale to large data sets.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Query formulation

General Terms: Algorithms, Performance, Theory

Keywords: Query reformulation, query-rewrite rules, en-
terprise search
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1. INTRODUCTION
While search engines on the Web are highly successful

in content retrieval, enterprise search remains an important
living challenge [2, 11, 12]. The retrieval community identi-
fied various sources of difficulty [5, 7, 10, 11], including the
sparseness of link structure and anchor text, low economic
incentive of content providers to promote easy search access,
and a strong presence of dynamic, domain-specific terminol-
ogy and jargon. Another practical difficulty lies in the fact
that enterprise search deployments are typically managed by
administrators who are domain experts but not search ex-
perts. Hence, although these administrators well understand
the specific content and search needs of the domain, trans-
lating that knowledge into tuning the underlying retrieval
model is a nontrivial (and sometimes impossible) task.

To address the above challenges, research and industrial
groups [8,9,21] advocated the design of search architectures
that are (1) easily comprehensible (featuring fairly trans-
parent ranking mechanisms), and (2) easily customizable
through intuitive runtime rules to program domain knowl-
edge. One important type of runtime rules is that of query-
rewrite rules (or rewrite rules for short) that, in essence,
introduce human-controlled query reformulation [18, 19] at
runtime. By augmenting or modifying the posed search
query, rewrite rules enable administrators to easily satisfy
a wide range of maintenance needs such as: adaptation of
terminology (e.g., produce a query where green card is re-
placed with permanent residency), query specialization (e.g.,
h5n1 instead of seasonal flu, or issi,1 the company’s software
installation tool, instead of download), query generalization
(e.g., intranet account management instead of intranet pass-
word change), noise removal (e.g., elimination of web page
from a query like james allan web page), and so on.

This work is motivated by a deployment of the above ar-
chitecture in the IBM internal search. There, the type of
tasks that dominate the effort of administrators is that of
pushing up relevant documents for specific search queries.
Such a task is typically triggered by an employee complaint
mentioning a specific query and a relevant document (URL)
missing from the top results (e.g., the first page). For exam-
ple, such a complaint can be that http://issi.ibm.com/lnotes2

is missing from the top results for lotus notes download. In
turn, the administrator can phrase a rewrite rule to accom-
modate the potential mismatch between the query and the
document. Those rewrite rules are in the spirit of (actually,
a generalization of) the “query template” rules [1, 20]. In

1IBM Standard Software Installer.
2We replaced each example URL with a simplified variant.



particular, a rule is usually applicable to multiple queries
(rather than to just one), and it usually results in augmen-
tation (rather than replacement) of the query by the newly
generated query. For example, the administrator can intro-
duce the rule download → issi that, in effect, incorporates
the results for lotus notes issi into those for lotus notes down-
load whenever the latter query is posed. In Section 2 we
describe our engine architecture and rules in more detail.

Manually formulating rewrite rules to handle complaints
is an extremely tedious and time consuming process. First,
the administrator needs to inspect the specified document
in order to come up with relevant rules. For each relevant
rule, a rough estimation is made on its effect on other queries
(and for that, query logs may be consulted). Next, the ad-
ministrator tries out her rule of choice (in a sandbox en-
vironment). If the desired effect (pushing up the desired
match) is not realized, this process is repeated with alterna-
tive rules, sometimes until the conclusion that the problem
lies in the ranking algorithm and/or the backend analyt-
ics. In this work, we seek to aid administrators of enterprise
search by automatically producing rewrite-rule suggestions
that are already validated as problem solvers. Towards this
goal, we need to overcome two major challenges, which are
the subject of this paper. These challenges are generic to
essentially every search system that features administration
by rewrite rules, and we confront these challenges in a level
of abstraction that departs from our specific testbed.

Challenge 1: Generating Intuitive Rules. A straight-
forward approach towards suggesting rewrite rules is to gen-
erate candidates from the desired document (or specific parts
thereof), and filter out the candidates that fail to achieve
the desired effect. However, the number of possible rules
obtained in this way can be overwhelmingly large. For ex-
ample, in our experimentation over real data (within IBM
intranet search), our automation often reaches around 100
suggestions, and in some cases around 1000. More impor-
tantly, the vast majority of the suggested rules do not make
sense to the administrator; that is, they are not rules of the
kind she would devise or perceive as intuitive. For illustra-
tion, Figure 1 shows some of the suggestions we obtained.
In the top part of the table in the figure, relating to seasonal
flu, the top two are reasonable but the other hardly make
sense. Note, however, that determining what “reasonable”
or “sense making” means may require domain knowledge.
As an example, IBM uses SCIP for consulting on organi-
zational reconstruction; thus, the top rewrites for change
management in the bottom part of Figure 1 make sense. Yet
one can hardly accept the other rules in that part.

We refer to a rule that makes sense as natural. Formu-
lating natural rules is necessary, as administrators should
be confident in the semantic justification of each rule. Put
differently, comprehensiveness, which is at the heart of the
architecture philosophy, is violated if rules are inconsistent
with human judgment. (This problem does not arise in on-
line query reformulation/expansion [4] that affect only the
internals of the search process.) Thus, crucial to realizing
automatic rule suggestion is a component that classifies rules
into natural and unnatural ones. In Section 3 we present a
machine-learning approach to realizing such a component.

A related problem is that of recommending query alter-
natives to end users [3,13,22]. However, a query alternative
applies just to the user-posed query, hence is different from
a rewrite rule. Furthermore, the techniques there are heav-

s t

seasonal flu avian flu
seasonal flu h5n1
seasonal flu flu employee
seasonal flu and IBM h5n1

seasonal avian
seasonal h5n1
seasonal flu
seasonal you and IBM

. . . . . .

change management scip
change management strategy & change internal practice
change management welcome to strategy
change management welcome strategy
change management strategy change & internal
change management to strategy change internal practice

management internal
management index pages
management internal practice scip

. . . . . .

Figure 1: Automatically generated rules s→ t

ily based on query logs and/or anchor text, which may be
sparse in the enterprise Intranet. The same holds true for the
work of Kraft and Zien [14], aiming to find reformulations
that are “closely related” to the original query. Moreover,
in these works a recommendation (or reformulation) has no
effect beyond the specific engine-user interaction at hand; it
is not the case here, as we discuss in the next challenge.

Challenge 2: Cross-Query Effect. As a rewrite rule can
affect multiple queries, its inclusion may actually reduce the
overall search quality. Further, a rule can cancel the posi-
tive effects achieved by previous rules. To illustrate, in the
example of Figure 4 (which we discuss in detail through-
out Section 4) the rule spreadsheets → symphony rewrites
spreadsheets download into symphony download, resulting in
the document d2 being a top match. Following a complaint
on the query lotus notes download, we introduce the rule
r1: download → issi. However, r1 also affects our previous
spreadsheets download by pushing the desired d2 below d1.

To address the above problem, the search administrator
maintains a representative benchmark of queries and de-
sired matches (possibly weighted by popularity) that in-
cludes those indicated in past complaints. To estimate the
effect of a candidate rule, search quality is evaluated (using
a quality estimator of choice, e.g., DCG) by running the en-
gine against the benchmark. If a negative effect is detected,
the administrator can avoid the rule, consider a new rule, or
just accept the loss in quality. But here, automation can con-
tribute significantly in terms of both effort and quality. We
can allow the system to automatically suggest the selection
of a subset of the rules to optimize quality (w.r.t. the un-
derlying estimator). Moreover, the administrator can then
choose multiple rules (instead of just one) to address a spe-
cific complaint, and thereby enrich the search space for the
system. In the above example, for instance, if the system
had the rule notes download → notes issi at its disposal, it
could suggest to use it instead of r1, and thus maintain the
top results for both spreadsheets download and lotus notes
download. In Section 4, we formalize this idea as a combi-
natorial optimization problem. Unfortunately, this problem
turns out to be computationally hard (NP-hard), and even
hard to approximate within any nontrivial ratio. Neverthe-
less, we propose greedy heuristics and optimizations thereof.

A related optimization problem has been recently studied
by Ozertem et al. [19], where one is given a collection of



results

Set Q
of queries

results
Ranked

q
Query

Final

Front end
Back end

Rewrite rules

Index
Query rewriting

Result aggregation

Figure 2: Search-engine architecture

query reformulations (each applying to one query) to select
from, and the goal is to maximize the probability of a click
in a user model built from the query log.

Organization. The rest of the paper is organized as fol-
lows. In Section 2 we briefly describe our search architecture.
We study the above two challenges in Sections 3 and 4, re-
spectively. In Section 5 we present an experimental study
within IBM intranet search, and we conclude in Section 6.

2. SEARCH-ARCHITECTURE OVERVIEW
In this section, we outline the architecture of the engine

deployed in IBM intranet search [21], to the extent needed
as background for this work.3 Figure 2 depicts a simplified
description of the conceptual runtime flow. The front-end
takes the input search query q and, by applying rewrite rules,
produces a set Q of queries. In turn, the queries in Q are
evaluated against the index, resulting in a list of results for
each query. The results are then aggregated together to
produce the final ranked list.

Similarly to existing search methodologies [6, 15, 23], this
engine leverages structural information from Web pages (such
as links, anchor text, headers and titles) in retrieval. The
basic idea is to produce high-quality fields associated with
each document, and at runtime use these fields for ranking.

Rewrite rules program the query rewriting component of
Figure 2 to affect the search as needed. The rewrite rules
in our engine are in the spirit of the query-template rules [1,
9, 20]. Rather than giving an elaborate specification of the
rule language, we give examples (in a simplified language).
The following rule fires when the query is of the form x info,
where x is belongs to a dictionary of products; it introduces
a new query with the term info removed.

EQUALS: x[in PRODUCT] info→ x

The next rule, involving a regular expression, fires when the
query contains the word lotus followed by either presenta-
tions or spreadsheets; it introduces a new query with the two
words replaced by lotus symphony.

CONTAINS: lotus x(presentations|spreadsheets)

→ lotus symphony

The next rule fires when the query contains msn search, and
introduces a new query with msn search replaced by bing.

CONTAINS: msn search→+ bing

The plus sign in →+ assigns preference to the new query
(containing bing) over the original query (containing msn
search). In effect, results for the new query are rewarded

3More details on this search engine can be found in the IBM
page of Infrastructure for Intelligent Information Systems
http://www.almaden.ibm.com/cs/disciplines/iiis.

compared to those for the original query. We do not discuss
here the details of this reward, as they are of low importance
to this work.

To simplify our study, this work is restricted to rewrite
rules of the form CONTAINS: s →+ t, which we denote
simply as s → t, where s and t are terms. We focus on
this particular type of rules since, besides their simplicity,
we found that they are the most commonly used in our en-
terprise. Moreover, with this restriction the problems we
consider are already challenging. While some of our contri-
butions can be easily extended to more general rules, others
require nontrivial future effort.

3. RECOGNIZING NATURAL RULES
In this section, we consider the first challenge discussed in

the introduction, where we explained the intuition underly-
ing the notion of natural rewrite rules and their importance
to the realization of automatic rule suggestion in enterprise
search. Our approach is to first generate a (possibly large)
set of candidate rules by pure syntactic means, and then to
classify them through (supervised) machine learning.

Candidate generation. The use case we consider involves
a query q and a desired match (document) d that is miss-
ing from the top results. Our generation of candidate rules
s → t is fairly straightforward: we produce a set S of left-
hand-side candidates, a set T of right-hand-side candidates,
and output the Cartesian product S×T . The set S consists
of all the n-grams (subsequences of n tokens) of q, where n is
bounded by a constant (5 in our implementation). In princi-
ple, we could similarly choose T as the set of all n-grams of
d (which could result in a huge number of candidates, even
if n is bounded). But in our implementation, T consists of
the n-grams just from the high-quality fields of d (produced
during back-end analysis). Recall that those fields were dis-
cussed in Section 2. As an example, suppose that q is the
query “change management info” and one of the considered
fields is “welcome to scip strategy & change internal practice.”
The following are among the candidate rules.
• management→ scip
• change→ strategy & change internal
• change management→ scip strategy

Even with the restriction to high-quality fields, the above
step may generate a large number of candidate rules, most
of which are unnatural (hence, useless to the administrator),
as illustrated in Figure 1. We address this problem by taking
a machine-learning approach: we identify a set of features
and learn classification models from manually labeled data
to classify rules into natural and unnatural ones.

Features. Table 1 lists the feature set we use for classify-
ing rules. These features fall into three categories: syntactic
features, features based on query-log statistics, and features
based on corpus statistics. Next, we briefly discuss the fea-
tures in each category. We denote the examined rule as
s→ t, where s and t are strings of words.

The syntactic features can be indicative of the syntac-
tic coherence of a rule. For example, using the Boolean
features beginSW (r) and endSW (r) follows our observation
that when s or t begins or ends with stop words, the rule
is rarely deemed natural. We consider two types of stop
words: those from conventional (English) dictionaries and
those from domain-specific dictionaries (including words like
“welcome,”“index” and “homepage”).



Table 1: Features for natural-rule recognition; the
considered rule is s→ t, and u refers to either s or t

Syntactic

beginSW (r) Whether u begins with a stop word
endSW (r) Whether u ends with a stop word
|r| Number of tokens in u

Query-Log Statistics

log refFreq(s, t) Log. of the s-to-t reformulation frequency

Corpus Statistics

log freq(u) Log. of the frequency of u
log freq(s ∧ t) Log. of concurrence frequency of s and t
log HQfreq(u) Log. of the frequency of u in titles

The category of query-log statistics has the single feature
log refFreq(s, t), representing common wisdom on query re-
formulation. In our case, we analyzed the query log of (four
months of) intranet search at IBM. For a pair q1 and q2 of
queries, refFreq(q1, q2) is the number of sessions that begin
with q1 and contain q2 (posed later than q1 in the session).

Under the category of corpus statistics we have numerical
statistics on s and t drawn from our engine index. The num-
ber freq(u) counts the documents containing u as an n-gram
(where u is s in one feature, and t in another). Similarly,
freq(s ∧ t) counts the documents containing both s and t as
n-grams. We use log freq(u) and log freq(s∧t) to capture the
popularity of s and t as well as correlation thereof. Finally,
HQfreq(u) is the frequency of u in our high-quality fields,
which roughly reflects the popularity of u in titles.

Classification models. We implemented two classifica-

tion models over our vector ~f of features. The first model
is simply a linear classifier, which we trained on manually
labeled data via SVM. The second model, which we found to
provide a significant improvement over the first, generalizes
the first by incorporating a Decision Tree (DT for short).
More specifically, the second model is a restricted version of
a DT with linear-combination splits [16, 17], and we call it

rDTLC for short. Given the vector ~f of features, a DT with
linear splits has a condition

P
aifi ≤ τ in each node (where

the ai and τ are to be learned in training). Our rDTLC
restricts this family by (1) bounding the depth (by 3 in
our implementation), and (2) having univariate splits (i.e.,
one-variable comparisons to thresholds) in all but the bot-
tommost levels. Figure 3 illustrates our rDTLC. Note that
here we essentially follow Kraft and Zien [14], who studied a
problem of a similar flavor, that used a linear classifier and
a standard decision tree (rather than rDTLC).

Using an algorithm for learning a linear classifier (e.g.,
SVM), learning an rDTLC can be done straightforwardly
by selecting thresholds from the feature values in the train-

No

fi0 ≤ τ0 ?

fi1 ≤ τ1 ? fi2 ≤ τ2 ?

P
difi ≤ τ6 ?

Yes No

P
bifi ≤ τ4 ?

Yes No

P
aifi ≤ τ3 ?

Yes No

P
cifi ≤ τ5 ?

Yes

Figure 3: An rDTLC

ing data, trying out every combination of the upper-level
thresholds τi, and taking the combination that minimizes
the classification error. For efficiency sake, we implemented
a fix-and-optimize heuristic where we optimized one thresh-
old at a time while fixing the others.

4. OPTIMIZING MULTI-RULE SELECTION
We now consider the second challenge discussed in the in-

troduction: selecting a set of rewrite rules from a large set
of previously defined rules, so as to maximize the overall
quality of search results. We formalize this task as a combi-
natorial optimization problem, discuss its (intractable) com-
plexity, and propose heuristic solutions.

4.1 Administration Settings
A rule-administration setting (or just administration set-

ting for short) is essentially an abstraction of the search-
engine’s interplay between queries, rewrite rules, and docu-
ments. It consists of a set R of rewrite rules and a graph G
that we call the rule-administration graph (or just admin-
istration graph for short). A rule in R transforms an input
user query q into a rewritten query q′. For brevity and clear
distinction between the two types of queries, we refer to q
(the user query) simply as a query, and to q′ (the rewritten
query) as an r-query. A query and an r-query are simply
finite sequences over an infinite alphabet of tokens (words),
and a rule s → t in R is defined similarly to the previous
sections (i.e., it replaces s, a subsequence of tokens in q,
with a sequence t). The administration graph is a tripartite
graph describing the relationships between queries, r-queries
and documents. Before we give the precise definitions, we
introduce our running example for this section.

Example 4.1. Figure 4 shows an administrator setting
(R,G). The set R is depicted in the top of the figure and
the graph G is depicted in the bottom.

Formally, an administration graph is a directed, edge-
weighted graph G = (V,E,w), where:
• V is the union of three disjoint sets of nodes: Vq is a

set of queries, Vr is a set of r-queries, and Vd is a set
of documents.
• E is the union of three disjoint sets of edges: Eqr ⊆
Vq × Vr is a set of reformulations, Eqd ⊆ Vq × Vd is a
set of query matchings, and Erd ⊆ Vr × Vd is a set of
r-query matchings.
• w : E → R+ assigns a positive score to each matching

in Eqd ∪ Erd, and is zero on all the edges of Eqr.

Example 4.2. Consider again our running example. Each
side of the tripartite graph G is surrounded by a dashed
rectangle. Let q ∈ Vq be the query lotus notes download.
The outgoing edges of q include the (zero-weight) reformu-
lation to the r-query q′ = lotus notes issi in Vr, and the query
matching to the document d1 ∈ Vd (which, for presentation
sake, is associated with the URL http://issi.ibm.com/lnotes).
The weight of the latter edge is 2, representing the extent to
which the engine scores the matching of d1 to q. A higher
score (namely 5) is assigned to the matching of d1 to q′, as
indicated by the weight of the r-query matching (q′, d1).

In principle, the same string can be represented by two
distinct nodes: a query in Vq and an r-query in Vr. So a
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Figure 4: The administration setting (R,G) of the
running example

node in Vq ∪ Vr should have an identifier, which we omit
from the formal model to simplify the presentation.

Let G be an administration graph, and let q ∈ Vq be
a query. Observe that a path in G from q to d consists
of either one edge (in Eqd) or two edges (one in Eqr and
the other in Erd). If G has a path (of length one or two)
from the query q to the document d, then we denote by
score(d|q) the maximal weight of a path from q to d. For a
query q and a natural number k, we denote by topk[q|G] the
series of k documents with the highest w(q, d), ordered in
descending w(q, d); if fewer than k documents are reachable
from q via directed paths, then topk[q|G] is restricted to only
the reachable documents (hence, topk[q|G] may have fewer
than k documents). We implicitly assume an underlying
linear order among the documents to resolve ties.

Example 4.3. Consider again our running example (Fig-
ure 4). Let q be the query spreadsheets download. There are
two paths from q to the document d2: a direct edge, and
through the r-query symphony download. Since the latter
has the maximal weight, 3, among all the paths from q to
d2, we get that score(d2|q) = 3. We can similarly verify that
score(d1|q) = 4. In particular, top1[q|G] is the series (d1),
and top2[q|G] (as well as top3[q|G]) is the series (d1, d2).

For a rewrite rule r and query q, let r(q) denote the r-query
that is obtained from q by applying r. An administration
setting is a pair (R,G), where R is a set of rewrite rules
and G is an administration graph, such that the set Eqr of
reformulations of G is the set {(q, r(q)) | q ∈ Vq ∧ r ∈ R}.
For a reformulation e = (q, q′) ∈ Eqr, the set of rules r ∈ R
with r(q) = q′ is denoted by R(e).

Example 4.4. Consider again the administration setting
(R,G) of our running example. For the edge e1 from q1 =
lotus notes download to q′1 = lotus notes issi we have R(e1) =
{r1, r4} (where the ri are specified in the top of the fig-
ure). Similarly, for q2 = email client issi and the reformula-
tion e2 = (q2, q

′
1) we have R(e2) = {r2}.

4.2 Abstract Rule Optimization
Consider an administration setting (R,G). Given a subset

R′ of R, we denote by GR′ the administration graph that is

spreadsheets issiemail client issi

spreadsheets download

lotus notes download lotus notes issi

symphony download

d2

d1

52

31

4

Figure 5: The graph GR′ for R′ = {r2, r3, r4}

obtained from G by removing from Eqr every reformulation
e that is produced by none of the rules in R′ (i.e., R′(e) = ∅).

Example 4.5. Consider again our running example (Fig-
ure 4), and let R′ be the set {r2, r3, r4} (i.e., R \ {r1}).
The graph GR′ is depicted in Figure 5. Observe that un-
like G, the graph GR′ has no edge from the query q1 =
spreadsheets download to the r-query q′1 = spreadsheets issi,
because R′(e1) = ∅, where e1 is the edge (q, q′) of G (re-
call that R(e1) = {r1}). However, there is an edge from
the query q2 = lotus notes download to the r-query q′2 =
lotus notes issi since, although for e2 = (q2, q

′
2) the set R′(e2)

lost r1, this set still contains r4.

Let G be an administration graph. A desideratum is a
function δ : Vq → 2Vd that maps each query q ∈ Vq to
a set δ(q) ⊆ Vd of desired matches. A quality measure µ
determines a quality score4 for each query q based on the
series topk[q|G] and the set δ(q), for a natural number k of
choice. We denote this score by µ(topk[q|G], δ(q)). As an
example, precision at k is the following µ:

µ(topk[q|G], δ(q)) =

( |topk[q|G]∩δ(q)|
|topk[q|G]| if topk[q|G] 6= ∅;

0 otherwise.

(1)
As another example, DCGk (without labeled relevance

scores) is the following µ:

µ(topk[q|G], δ(q)) =

jX
i=1

2ai − 1

log2(i+ 1)
, (2)

where topk[q|G] = (d1, . . . , dj), and each ai is 1 if di ∈ δ(q)
and 0 otherwise.

The top-k quality of G, denoted µk(G, δ), is obtained by
summing up the scores across all the queries:

µk(G, δ)
def
=
X
q∈Vq

µ(topk[q|G], δ(q)) (3)

For readability, we may omit δ(q) and δ from the term
µ(topk[q|G], δ(q)) and µk(G, δ), respectively, when δ is clear
from the context.

Example 4.6. Consider the following desideratum δ for
our running example:
• δ(lotus notes download) = δ(email client issi) = {d1}
• δ(spreadsheets download) = {d2}

The reader can verify that top1[q|G] = (d1) for all three
queries q in Vq. Thus, for each of the functions µ of Equa-
tions (1) and (2) we get µ1(G) = 1 + 1 + 0 = 2.

4In principle, µ can represent a utility function that is not
necessarily a vanilla quality measure, such as ad benefits [18].



Algorithm G-Greedy((R,G), δ, k)

1: S ← ∅
2: ∆← 1
3: while ∆ > 0 do
4: r ← argmaxr∈R\S

`
µk(GS∪{r})− µk(GS)

´
5: ∆← µk(GS∪{r})− µk(GS)
6: if ∆ > 0 then
7: S ← S ∪ {r}
8: return S

Figure 6: The globally greedy algorithm

Now, consider the graph GR′ of Figure 5 (discussed in
Example 4.5). There we have top1[q|G] = (d1) for q =
lotus notes download and q = email client issi, but top1[q|G] =
(d2) for q = spreadsheets download. In particular, µ1(GR′) =
3 for the two aforementioned functions µ.

Abstract rule optimization is the following problem. We
are given an administration setting (R,G), a desideratum
δ, and a natural number k. The goal is to find a sub-
set S of R that maximizes µk(GS); that is, S is such that
µk(GS) ≥ µk(GR′) for every subset R′ of R. Such S is an
optimal solution. A weaker goal is to find an α-approximate
optimal solution, where α ≥ 1 is either a number or a nu-
meric function of the input; such a solution is a set S ⊆ R
that satisfies α · µk(GS) ≥ µk(GR′) for all R′ ⊆ R.

Example 4.7. Suppose that µ is one of the functions of
Equations (1) and (2), and consider again the administration
setting (R,G) of our running example (Figure 4). Suppose
that the input for abstract rule optimization contains, in
addition to (R,G), the desideratum δ of Example 4.6 and
k = 1. In Example 4.6 we discussed the graph GR′ of Fig-
ure 5 (where R′ = {r2, r3, r4}). As µ1(GR′) = 3 is clearly
optimal, R′ is an optimal solution in this case.

To simplify the discussion on computational complexity,
we assume that µ is fixed (i.e., not part of the input), and
that µ(topk[q|G]) is computable in polynomial time. Next,
we show that abstract rule optimization is hard to approx-
imate. We make the following assumption on the quality
measure µ: there is a positive constant c, such that for
all queries q, if δ(q) consists of exactly one document then
µ(top1[q|G]) = c if top1[q|G] = δ(q), and µ(top1[q|G]) = 0
otherwise (i.e., if top1[q|G] does not contain the single docu-
ment in δ(q)). Note that this assumption holds in standard
measures that are parameterized by a restriction to the top-
k results (assuming that different results are not weighted
by different levels of relevancy), such as DCGk, normalized
DCGk, and precision at k. We say that a function with this
property is reasonable at one. The following theorem states
that abstract rule optimization is extremely hard (to even
approximate), no matter which quality measure µ is used, as
long as µ is reasonable at one. The proof is in the appendix.

Theorem 4.8. Whenever µ is reasonable at one, abstract
rule optimization is NP-hard to approximate by any constant
factor, or even by |Vq|1−ε for every ε > 0.

Algorithm L-Greedy((R,G), δ, k)

1: S ← ∅
2: T ← {(q, d) ∈ Vq × Vd | d ∈ δ(q)}
3: for all (q, d) ∈ T do
4: r ← argmaxr∈relk(q,d)

`
µk(GS∪{r})− µk(GS)

´
5: if µk(GS∪{r}) > µk(GS) then
6: S ← S ∪ {r}
7: return S

Figure 7: The locally greedy algorithm

Due to the inherent hardness of our problem, in the fol-
lowing section we present heuristic approaches (that are ex-
plored experimentally in Section 5).

4.3 Greedy Heuristics
In this section, we devise two simple heuristic algorithms,

each following a greedy approach. We call the first algorithm
globally greedy and the second locally greedy. The reasons for
the algorithm names will be clear from their descriptions.
Later, we discuss the optimization of these algorithms.

4.3.1 The Globally Greedy Algorithm
The globally greedy algorithm, depicted in Figure 6 un-

der the name G-Greedy, applies the following very simple
approach. It initializes an empty solution S ⊆ R (line 1),
and iteratively adds to S the best missing rule r (found in
line 5). The best rule r is such that the difference ∆ between
the quality obtained by adding r, namely µk(GS∪{r}), and
the current quality, namely µk(GS), is maximal. The al-
gorithm terminates (and returns S) once ∆ is non-positive
(hence, no improving rule can be found).

In our experiments we found that the globally greedy al-
gorithm performs very well in terms of the quality of the
returned solution S. However, this algorithm is extremely
slow, due to its inherent cubic time: the loop of line 3 can
take up to |R| iterations, and then line 4 (finding r) entails
traversing over all r ∈ R \ S and computing µk(GS∪{r}),
which requires computing topk[q|G] (and summing up the
µ(topk[q|G])) for all queries q ∈ Vq. Later, we discuss opti-
mizations of this algorithm. But even the optimized version
of this algorithm hardly scales up. Therefore, we consider
the next, lower complexity algorithm.

4.3.2 The Locally Greedy Algorithm
The locally greedy algorithm, L-Greedy, is depicted in Fig-

ure 7. Similarly to the globally greedy algorithm, the locally
greedy one initializes an empty solution S (line 1) and incre-
mentally adds rules (lines 2–6). The main difference between
the algorithms is that in the main loop of the locally greedy
one, we search for the rule r (to add to S) in a practically
tiny subset of the set R of rules (rather than in all of R).

More specifically, line 2 constructs the set T of all tasks,
where a task is a pair (q, d) such that q is a query (in Vq)
and d is a desired document for q (i.e., q ∈ δ(d)). Then, the
main loop (line 3) traverses all tasks in an arbitrary order.
For a considered task (q, d), we define relk(q, d) to be the set
of all the rules r that are relevant to the task, that is: (1) r
is on a path from q to d, or more formally, for some q′ ∈ Vr



we have e = (q, q′) ∈ Eqr, r ∈ R(e), and (q′, d) ∈ Erd, and
(2) taken alone r can push d to the top-k results of q, or
more formally, d ∈ topk[q|G{r}]. In line 4, a rule r that
maximizes µk(GS∪{r}) − µk(GS) is added to S, provided
that this maximum value is positive.

4.3.3 Optimization
In both the globally greedy and the locally greedy al-

gorithms, a significant portion of the computation takes
place on computing the quality of the system on interme-
diate sets of rules (that is, the computations of µk(GS)
and µk(GS∪{r}) in line 4 of Figure 6 and line 4 of Fig-
ure 7). This computation is done to obtain the difference
µk(GS∪{r}) − µk(GS), where S is the current set of rules
and r is a considered candidate rule. Let ∆(S, r) denote
that difference. We can optimize the computation by ob-
serving that ∆(S, r) is affected by only a few of the queries,
namely those on which r fires.

Formally, consider a query q, a rule r and a set S ⊆
R. Define ∆(q, S, r) = µ(topk[q|GS∪{r}]) − µ(topk[q|GS ]).
From (3) we get that ∆(S, r) =

P
q∈Vq

∆(q, S, r). Denote

by Vq(r) the set of queries q ∈ Vq, such that r ∈ R(e) for
some edge e ∈ Eqr emanating from q. An easy observation
is that ∆(q, S, r) = 0 whenever q /∈ Vq(r), and therefore
∆(S, r) =

P
q∈Vq(r) ∆(q, S, r).

The optimization is as follows. During the computation
we maintain each µ(topk[q|GS ]) for the current S. (So, at
the beginning we compute µ(topk[q|G∅]).) When a rule r is
considered, we iterate over the queries in Vq(r) and compute
µ(topk[q|GS∪{r}]), thus obtaining ∆(q, S, r). We sum up all
these ∆(q, S, r) into ∆(S, r) to be used in the next steps.
Hereafter, the optimized versions of G-Greedy and L-Greedy
are denoted by G-Greedy-opt and L-Greedy-opt, respectively.

4.4 Weighted Queries
In realistic scenarios, queries may carry different levels

of importance, which may be expressed by means of query
weights. For instance, this weight can be the frequency in
which the query is posed. In the experimental study of
the next section, we use as weights frequencies derived from
query logs. The abstraction presented in this section can in-
corporate weighted queries in a straightforward manner. In
particular, the abstract model assigns a weight w(q) to each
query q ∈ Vq, and in the definition of µk(G) (see (3)), each
addend µ(topk[q|G]) is multiplied by w(q). The greedy algo-
rithms automatically adjust to weights by using the weighted
µk. An intuitive traversal order on T in the locally greedy
algorithm (Figure 7) is by decreasing w(q); we indeed apply
this order in the experiments of the following section.

5. EXPERIMENTAL EVALUATION
In this section, we describe an empirical evaluation of our

proposed solutions over the IBM intranet search engine, with
datasets provided by the company’s search administrators.

More specifically, our dataset was obtained from a list of
1894 suggested matches provided by IBM CIO Office, where
a suggested match consists of a query q and a document d de-
sired as a top match for q. Generally, the queries involved in
the suggested matches are frequent, and hence are recorded
for quality maintenance. Note that a query can be matched
against multiple documents, and a document may be sug-

gested for multiple queries. As mentioned in Section 3, by
analyzing the high-quality fields (e.g., titles and URLs) of
desired documents, we generated for each suggested match
a set of query-rewrite rules, each of which, in the absence of
any other rule, is capable of pushing the desired document
up to the top-5 results for the given query. This produced a
total of 11907 rules. Our methodology for extracting input
from these suggested matches and rules will be described
in the following sections. Our experiments ran on a Linux
SUSE (64-bit) server with eight 4-core Intel Xeon (2.13GHz)
processors and 48GB of memory. The algorithms were im-
plemented in Java 1.6 and ran with 12GB allocated memory.

5.1 Recognizing Natural Rules
We first evaluated the classification models of Section 3

for recognizing natural rules. Among all generated rules, we
randomly selected and manually labeled 1187 rules as either
natural or unnatural. Such labeling is subject to human
judgment; moreover, labeling often required domain-specific
knowledge, and for that we needed to inspect the pages rel-
evant to the terms involved in the rule. Using this labeled
dataset, we evaluated the accuracy of the classifiers SVM
and rDTLC. The results reported in this section were con-
sistently obtained by performing a 5-folder cross validation.

We also explored the question of how the classifiers per-
form on rules for more popular suggested matches. We an-
alyzed the query logs of four months of intranet search at
IBM and estimated the popularity of each suggested match
by counting the number of sessions that have a click on the
suggested document for the corresponding query. Therefore,
each quality measure has two versions—the unweighted ver-
sion is denoted by uw and the weighted version is denoted
by w. In addition, we retrained the two classifiers by in-
corporating the weights on rules, thereby obtained a third
version denoted by wt (weighted training). Whether or not
to train the classifier with weights is a matter of a choice
that depends on the specific scenario, and for that reason
we evaluated both the w and the wt versions.

Figure 8 reports the accuracy (ratio of correctly classified
rules) for SVM and rDTLC. As shown, when trained without
weights rDTLC outperforms SVM by about 10% for both
the unweighted and weighted measures. When the classifiers
are trained with weights, rDTLC has a smaller improvement
(about 3%) and both classifiers achieve high accuracy.

Even with classification, the number of natural rules may
still be large. An administrator may be interested in only
the top-k rule suggestions for some k. We explored the
naive strategy of ranking the top-k candidate rules by de-
creasing confidence of the classifier at hand. We leave for
future work the exploration of more sophisticated learn-
ing to rank strategies for this task. Nevertheless, we ob-
serve that this naive approach is already beneficial compared
to a random selection of k candidates (a strategy denoted
as RND). Specifically, Figure 9 gives the Mean Recipro-
cal Rank (MRR) of the different rankers. Figures 10 and
11 give the normalized Discounted Cumulative Gain at the
top-k results (nDCGk) where k = 1, 3, 5 for the unweighted
and weighted cases, respectively. We can see that when the
classifiers are not retrained with weights, rDTLC performs
significantly better than SVM (and RND), but its advantage
over SVM disappears when they are retrained with weights;
in particular, when trained with weights both are almost
always capable of suggesting natural rules for all k = 1, 3, 5.
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Figure 11: nDCGk (weighted) for rule ranking

5.2 Optimizing Multi-Rule Selection
We now present an experimental study of our solutions

for the abstract rule optimization problem (Section 4).

Datasets. We constructed several datasets from our collec-
tion of suggested matches. Each dataset is an administration
setting constructed by selecting a subset M of the suggested
matches, and a subset R of the rules automatically created
for M . (Observe that M implies a desideratum δ.) Later,
we will explain how exactly M and R are selected for each
dataset. Once M and R are selected, the administration
graph G is constructed as follows. The queries in M form
the set Vq of queries. The set Vr of r-queries is obtained by
applying the rules in R to the queries in Vq. The set Vd of
documents contains all the documents in M , as well as the
top-5 results for each query and r-query in Vq ∪ Vr, as ob-
tained by invoking our search engine without rewrite rules.
The edges of G are defined in the obvious manner.

Algorithms. We compared the G-Greedy and L-Greedy al-
gorithms and their optimized versions G-Greedy-opt and L-
Greedy-opt, as described in Section 4.3. We also considered
several baseline algorithms: G-Random, L-Random and All-
Rules. G-Random and L-Random are similar to their greedy
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Figure 12: nDCGk (unweighted) for the labeled
dataset
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Figure 13: nDCGk (weighted) for the labeled dataset
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Figure 14: MRR for the labeled dataset

counterparts, except that their selection of rules is random.
More precisely, G-Random selects a random subset of rules
among all the rules, and L-Random randomly selects an effec-
tive rule for each suggested match. The algorithm AllRules
simply selects all the rules.5

Measures. We consider two quality measures µ: the nor-
malized Discounted Cumulative Gain at the top-k results
(nDCGk), and the Mean Reciprocal Rank (MRR). Since our
administration graph is restricted to the top-5 matches for
each query and r-query, MRR is restricted to the top-5 re-
sults as well (as it would not make sense otherwise).

To estimate the gap between the solution provided by each
of the algorithms and the optimal solution, we computed an
upper bound on the optimum for each quality measure µ, as
follows. We evaluated the sum of Equation (3), where each
addend µ(topk[q|G], δ(q)) is computed as if each suggested
match is ranked as high as possible using a rule from the our
collection. So, in principle, we allow this bound to place two
documents in the same rank. Note that this number is not
smaller than, and may be strictly larger than, the optimum
(namely µk(GS) for an optimal solution S).

Weights. We used both unweighted and weighted quality
measures. In the weighted version, each query is weighted
by the number of sessions where it is posed, as recorded
in the aforementioned four months of query logs. For the
unweighted version, the algorithms L-Greedy, L-Greedy-opt
and L-Random iterate over the suggested matches (which

5Albeit straightforward, AllRules represents a common prac-
tice of our search administrators.



Table 2: Running time

µ = MRR, k = 5 (ms)

Alg. Labeled BM Extended

G-Greedy 25193 82566 > 24 hours
G-Greedy-opt 2911 7719 > 24 hours

L-Greedy 404 3517 1648137
L-Greedy-opt 39 110 87484

µ = nDCG, k = 1 (ms)

Alg. Labeled BM Extended

G-Greedy 26356 82595 > 24 hours
G-Greedy-opt 2638 6896 > 24 hours

L-Greedy 399 3462 3522894
L-Greedy-opt 38 112 124613

form the set T in Figure 7) in a random order obtained by
applying a random permutation thereof. For the weighted
version, iteration over the suggested matches is ordered by
decreasing weight of the involved queries.

5.2.1 Evaluation on the Labeled Dataset
In the first set of experiments, we used the labeled dataset

obtained by taking as M the suggested matches that were
used for labeling rewrite rules (see Section 5.1), and as R
the set of rules that are manually labeled as natural. The
resulting administration graph contains 135 queries, 300 r-
queries, 423 documents, and a total of 1488 edges. Note that
only a small portion of the suggested matches were used for
labeling; the others, for which the rules are not labeled, will
be used later in Section 5.2.2.

We first examined the quality of solutions produced by
each of the algorithms. Figures 12 and 13 report the nDCGk,
with k = 1, 3, 5, for the unweighted and weighted cases, re-
spectively. Figure 14 reports the MRR for both unweighted
and weighted cases. (The groups labeled with BM will be
discussed later.) Observe that on all quality measures, L-
Greedy and G-Greedy score significantly higher than the other
alternatives. In fact, they already reach the upper bound,
and hence provide optimal solutions.

The goal of the next experiment is to explore the solutions
in the presence of suggested matches that hit the top search
results without requiring rules (yet, they can be affected by
introducing rules). This setting represents a typical scenario
where a search administrator needs to address problematic
queries without compromising the overall search quality. For
that, we enhanced the set M , from the construction of the
labeled dataset, with 373 such suggested matches that are
used as a benchmark. The groups of bars labeled with BM in
Figure 14 report the MRR for both the unweighted and the
weighted cases. Note that the greedy algorithms get better
scores than the other alternatives, and again reach the upper
bound. But now, the other alternatives get high scores as
well, since many suggested matches in the benchmark are
not affected by the rules in R. The results for nDCGk show
a similar picture, and are therefore omitted.

Next, we compare the execution cost of the algorithms.
AllRules, G-Random and L-Random entail a negligible run-
ning time (less than 0.2 ms). We focus on the globally and
locally greedy algorithms, and examine the contribution of
the optimization. Table 2 summarizes the running times for
two different combinations of µ and k. The columns enti-
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Figure 15: nDCGk (unweighted) for the extended
dataset
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dataset
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Figure 17: MRR for the extended dataset

tled “Labeled” and “BM” refer to the labeled dataset and
the one enhanced with the benchmark, respectively. (The
columns entitled “Extended” will be discussed later.) Ob-
serve that the locally greedy algorithms are over one order
of magnitude faster than their globally greedy counterparts.
In addition, the optimized versions are generally over one
order of magnitude faster than their unoptimized counter-
parts. In particular, the optimized version of our locally
greedy algorithm is capable of finding an optimal solution
in real time for the typical usage scenarios.

5.2.2 Evaluation on the Extended Dataset
The results of the previous experiments demonstrate the

effectiveness and feasibility of the greedy algorithms. To
further evaluate the scalability of the greedy algorithms, we
constructed a larger extended dataset. To create this dataset,
we used as M the set of all the suggested matches, and
as R the set of all the rules automatically generated for
them (including those that are not labeled). The resulting
administration graph contains 1001 queries, 10990 r-queries,
4188 documents, and a total of 36986 edges.

Again, the running times for two different combinations
of µ and k are shown Table 2, now by the columns entitled
“Extended.” The globally greedy algorithms (including the
optimized one) do not scale to the extended dataset. For
the locally greedy algorithms, the improvement achieved by
the optimization is again by over an order of magnitude.

Finally, we evaluated the quality of the solutions over the
extended dataset. Figures 15 and 16 report the nDCGk,
with k = 1, 3, 5, for the unweighted and weighted cases, re-
spectively. Figure 17 reports the MRR for both unweighted



and weighted cases. Consistently with the previous experi-
ments, L-Greedy outperforms the other alternatives. The gap
between L-Greedy and the upper bound is generally around
one percent, and is barely notable in the figure. These re-
sults demonstrate that even in the extreme case where the
administrator adopts all candidate suggestions, L-Greedy-opt
can find a practically optimal solution within a reasonable
amount of time (around 2 minutes).

6. CONCLUDING REMARKS
The rule-based architecture aims to provide search admin-

istrators with the means of adapting the search engine to
the content and dynamics of the enterprise. In this paper,
we explored the incorporation of automation in the man-
ual practice of administrators. Specifically, we studied the
problem of suggesting natural rewrite rules, and proposed
corresponding machine-learned classifiers for rules. We also
studied the problem of selecting rules, from a given collec-
tion, with the goal of optimizing the quality on a benchmark.
We presented a theoretical model that captures this task as
a combinatorial optimization problem, analyzed its theoreti-
cal complexity, and proposed heuristic algorithms to accom-
modate its hardness. Experiments on a real enterprise case
(IBM intranet search) indicate that the proposed solutions
are effective and feasible.

While the testbed for this work has been the IBM inter-
nal search, the two challenges we studied hold in essentially
every search system that supports administration by rewrite
rules. Moreover, the setting and solutions we proposed are
at a level of abstraction that hardly ties them to our specific
testbed. In future work, we plan to focus on extending our
techniques to handle significantly more expressive rules.
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APPENDIX
Proof of Theorem 4.8. We show a reduction from the
maximum clique problem: given an undirected graphH, find
a clique of a maximum size, where a clique is a set C of nodes
such that every two members are adjacent. Zuckerman [24]
showed that for all ε > 0, it is NP-hard to approximate this
problem to within n1−ε, where n is the number of nodes.

Given an undirected graph H, we construct the adminis-
tration setting (R,G) as follows. For each node v of H, let
N(v) denote the set of neighbors of v, and we define two
unique words av and bv. For each such v, R contains the
rule av → bv, G has the query qv that consists of av followed
(in some order) by all the au where u /∈ N(v), and G has two
unique documents dgd

v and dbd
v . The r-queries of G are all

those obtained by applying a rule in R to a query of G. Let
q′ be an r-query of G. If q′ begins with av, then G has the
r-query matching (q′, dbd

v ) with the weight 2; and if q′ begins
with bv, then G has (q′, dgd

v ) with the weight 1. There are no
query matchings in G. Finally, the desideratum δ maps each
qv (where v is a node of H) to the singleton δ(qv) = {dgd

v }.
Observe the following for a subset R′ of R and a node

v of H. If R′ contains a rule au → bu for some node u /∈
N(v), then qv is reformulated into an r-query that begins
with av and thus matches dbd

v with the weight 2, implying
top1[qv|GR′ ] = (dbd

v ). If R′ contains av → bv but no rule
au → bu where u /∈ N(v), then qv is reformulated only
into an r-query that begins with bv and thus matches dgd

v

with the weight 1, implying top1[qv|GR′ ] = (dbd
v ). If R′

contains none of av → bv and au → bu (u /∈ N(v)), then
top1[qv|GR′ ] = ∅. From this observation, the correctness of
the reduction is proved straightforwardly: for each subset
R′ ⊆ R, if µ1(GR′) = c · m (where c is taken from the
definition of reasonable at one), then we can obtain from
GR′ (in polynomial time) a clique of size m in H; on the
reverse direction, from each clique of size m in H we can
construct a subset R′ ⊆ R with µ1(GR′) = c ·m.


