
Synthesizing Extraction Rules from User Examples with
SEER

Maeda F. Hanafi, Azza Abouzied
New York University - Abu Dhabi

{maeda.hanafi, azza}@nyu.edu

Laura Chiticariu, Yunyao Li
IBM Research - Almaden

{chiti, yunyaoli}@us.ibm.com

ABSTRACT
Our demonstration showcases SEER’s end-to-end Information Ex-
traction (IE) workflow where users highlight texts they wish to
extract. Given a small set of user-specified example extractions,
SEER synthesizes easy-to-understand IE rules and suggests them
to the user. In addition to rule suggestions, users can quickly pick
the desired rule by filtering the rule suggestion by accepting or
rejecting proposed extractions. SEER’s workflow allows users to
jump start the IE rule development cycle; it is a less time-consuming
alternative to machine learning methods that require large labeled
datasets or rule-based approaches that are labor-intensive. SEER’s
design principles and learning algorithm are motivated by how rule
developers naturally construct data extraction rules.

Keywords
Data Extraction; Example-driven learning; Information Extraction

1. INTRODUCTION
The need to quickly and automatically retrieve important infor-

mation from semi-structured and unstructured documents, such as
financial reports or news articles, has propelled interest in informa-
tion extraction (IE) [2]. Many IE tools used extensively in many
applications can be time-consuming, labor-intensive, or expensive.
Most techniques fall under two major approaches: machine learning
(ML) methods or programming language (PL) methods [2]. ML
methods (surveyed in [3]) often require large training datasets and
use complex, opaque models. PL methods [12, 6] often provide clear,
easy-to-understand domain-specific languages. Yet, scripting even
in a relatively easy language is labor-intensive and time-consuming.
Similar to learning-by-example data extraction tools such as Wran-
gler [5], FlashExtract [8] and Wrapper Inductors [11, 7], SEER [4]
combines the best of both worlds and learns easy-to-understand
data extraction rules uniquely suitable for free-form text from a few
user-provided examples of data extractions.

Consider a value-investor, Wendy Buffet, trying to assess the
financial stability of several companies. She has access to five
years of financial reports and statements produced by each company.
Daunted by the manual task of extracting quarterly revenues for each

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3056443

company, Wendy decides to learn how to code in Python to automate
the task. As a novice developer, she first spends hours writing and
debugging a simple script to extract numbers following a dollar
sign. Through several time-consuming coding attempts, she finally
writes a script that can extract several variations of monetary values
(e.g. ‘$50,000’, ‘1.5 million USD’, ‘600,000 dollars’) only to realize
that she still needs to filter her results to only monetary values that
refer to quarterly revenues. She continues this long and laborious
process until she achieves the desired quality of results. Wendy, then,
realizes that she also wishes to examine losses. Intimidated by her
initial experience, she stumbles upon machine learning. Confused
by the terminology, the plethora of learning models, and the need
for a labeled training dataset, she quickly gives up on this approach.

We designed SEER to address the challenges faced by users like
Wendy with data extraction. SEER (1) reduces the barrier of learning
a new programming language for novice developers, (2) minimizes
the time-consuming, manual effort required in constructing rules,
and (3) does not require large labeled datasets, which are hard to
obtain. SEER suggests easy-to-understand extraction rules in Visual
Annotation Query Language (VAQL) [9], a commercially available
declarative graphical language for IE rule development over IBM’s
SystemT extraction engine [6]. With SEER, Wendy simply high-
lights examples of revenue or loss statements such as ‘Fourth-quarter
revenue was 6 million dollars’ and SEER automatically suggests
extraction rules, which she can easily modify to better suit her needs.
Alongside rule suggestions, SEER also displays a collection of ex-
tractions, known as refinements, that help differentiate the suggested
rules. Based on user feedback (accept or reject) on these refine-
ments, SEER further refines the set of suggested rules. Filtering the
suggestions helps the user quickly select the desired rule without
having to analyze each suggested rule.

SEER is unique as its design principles are motivated by how
actual rule developers construct rules [4]. First, rule developers
often prefer to use pre-built semantic extractors that extract con-
cepts such as phone numbers or dates over more syntactic extractors
such as regular expressions that perform an identical extraction.
SEER augments its learning algorithm with heuristics that encode
such preferences. Thus, with the help of heuristics, SEER leverages
domain knowledge that is unavailable to ML methods without the
presence of large labeled datasets. Second, rule developers often
create dictionaries that capture a set of interchangeable string literals
such as ‘increased’, ‘rose’. SEER’s learning algorithm automatically
merges literals to create dictionaries on-the-fly. Third, rule devel-
opers often construct multiple rules to extract text variations. SEER
automatically generates natural disjunctions of rules when extrac-
tions cannot be captured by a single rule. Finally, SEER suggests
structurally diverse rules as rule developers often prefer to examine
rule variations that can lead to different extraction outcomes rather
than slight variations of one rule.

1687

http://dx.doi.org/10.1145/3035918.3056443

than slight variations of one rule.
Our evaluations for SEER [4] reveal that users with scripting ex-

perience were able to finish IE tasks in less time and with more
accuracy than when constructing rules themselves in VINERy (Vi-
sual Integrated Development Environment for Information Extrac-
tion) [9], a commercially available drag-and-drop tool for manually
building VAQL rules. Moreover, SEER also encouraged users to
be more thorough: they proactively searched instances of target
extractions in the documents and verified the extractions more often
than with VINERy. Both activities are essential for the construc-
tion of precise and accurate rules. Without SEER’s support, users
often overlooked these activities and were confident of the accuracy
of their self-constructed rules after only skimming their first few
extractions [4].

SEER is different from existing synthesis works like FlashEx-
tract [8] and Wrapper Induction methods [11, 7], because such
works depend on features and consistent patterns of the surrounding
target extraction text, or context, e.g. surrounding punctuation such
as commas, semicolon, or HTML or XML tags, etc. SEER does not
learn from the context and works just as well for both structured
documents, e.g. CSVs, logs, etc., and unstructured documents, e.g.
reviews, press statements, etc. Moreover, while ML techniques often
require large labeled datasets and use complex and opaque models
that are hard to interpret [2], SEER can learn rules in VAQL [9] from
a handful of examples thus providing transparency and ease of de-
bugging. SEER jump starts the process for developing IE rules from
a blank canvas. Works related to SEER address different scenarios,
such as refining existing rules [10] or extracting relations from the
web [1].

2. DEMONSTRATION OVERVIEW
At the demonstration, conference attendees will use SEER to con-

struct extraction rules and extract data from multiple preloaded data
sets or any easily downloadable text dataset of their choosing. For
example, users can extract financial information such as quarterly
revenues from a dataset of press releases from different companies;
or faculty contact information from online university directories; or
crime data from a dataset of FBI press releases. The demonstration
will walk each attendee not only through the user interface of SEER
(Figure 1) but also through SEER’s language, its rule learning and
refinement algorithms, its system architecture and a summary of its
user evaluation. To handle overcrowding, a short video demo of
SEER will also be available for independent viewing on tablets.

In what follows, we will describe how SEER works, in a fashion
similar to how we would describe it to attendees with the help of the
following scenario.

2.1 Scenario
Jane is writing an op-ed on changes in crime patterns across the

US. At the demo booth, she uses SEER to extract relevant informa-
tion from a dataset of FBI press releases. In particular, she wishes
to extract percentage changes in offenses. Jane will load the dataset
into SEER (documents panel in Figure 1). She then searches for the
word ‘offenses’ and highlights an example of a percentage change,
e.g. ‘offenses dropped 9.8 percent’. SEER colors the text with a
yellow highlight. She then clicks on the button labeled “Positive
Example?” to indicate that she wishes to extract similar data; the
text is now highlighted in green. Alternatively, if she clicks the
“Negative Example?” button, she indicates that she does not wish to
extract the highlighted text and SEER colors it red.

Jane highlights more positive examples: ‘offenses dropped 9.8
percent’, ‘offenses decreased 3.2 percent’, ‘offenses declined 8.0
percent’, etc. She then clicks “Suggest me some rules!”. As SEER

learns and suggest rules in response to Jane’s example highlights,
we will describe SEER’s rules (section 2.2), rule generation from
positive (section 2.3) and negative examples (section 2.4) and how
rule refinement works (section 2.5).

2.2 SEER rules
Given Jane’s three positive example highlights, SEER suggests

the rules in Figure 2a. SEER’s rules are specified using a subset of
Visual Annotation Query Language (VAQL) [9], and are executed
by the SystemT engine [6].

Rules extract text from documents pre-tokenized by VAQL. VAQL
delimits text on white space characters, such as spaces, newlines,
tabs, etc. VAQL considers symbols like dashes, commas, etc., as
tokens. Hence, ‘1998-Jan14’ would have the following tokens:
‘1998’, ‘-’, and ‘Jan14’.

SEER learns a disjunctive union of VAQL sequence rules, where
each rule consists of a sequence of one or more extraction primitives,
of one of the types listed below. The results of executing a rule or
primitive over the input text are called extractions. We say that a
rule captures a sequence of tokens if the sequence is among the
extractions of the rule on the input text.

• Pre-built: Pre-builts capture one or more tokens of a particular
concept such as organization, person, phone number, etc. For
example, the pre-built P: Percentage captures percentages like
‘11.9 percent’ and ‘9.8%’.
• Literal: Literals capture one or more tokens matching an exact

string, e.g. L: ‘percent’ captures all tokens ‘percent’ that appear
in the text.

• Dictionary Dictionaries contain a set of literals and capture to-
kens that match one of those literals, e.g. D: {up, down} cap-
tures any of the two words that appear in the text.
• Token Gap: Token gaps skip over a number of tokens. Token

gaps cannot be placed in the beginning or the end of a rule. Within
the rule, L: ‘11’ T : 0-3 L: ‘percent’ , the token gap T : 0-3
skips over zero to three tokens to capture the middle tokens of the
following texts: ‘11.9 percent’ or ‘11 percent’.

• Regular Expression: Regular expressions describe search pat-
terns, e.g. R: [A-Za-z]+ captures a token consisting of letters.
Other expressions are listed in [4].

SEER comes pre-loaded with a catalog of pre-builts. Users may
also supply their own pre-builts in addition to the default pre-builts
in VAQL. Such pre-builts are user-defined rules. For instance, a user
can provide a pre-built for ordinal numbers, P: Ordinal Numbers ,
which is a rule consisting of a single dictionary primitive:
D: {first, second, third, ...} .

2.3 Rule Generation from Positive Examples
The final set of rules in Figure 2a are diverse and consistent. Rule

diversity ensures that the suggested rules capture different sets of
extractions. Specifically, a diverse set of rules should not contain
rules composed of mainly one type of primitive; for instance, a
non-diverse set of rules would only contain pre-built primitives. The
final set of rules suggested are also consistent with the given exam-
ples, i.e. they capture all the positive examples and capture none
of the negative examples. SEER also creates dictionary primitives
from unequal literals (see the fifth rule in Figure 2a). The dictio-
nary contains the middle tokens of the examples, e.g. ‘declined’,
’decreased’.

SEER tests whether different primitives can capture tokens in a
brute-force fashion and then stores sequences of these primitives in
a rule tree for each example. Details of tree generation can found
in the full paper [4] and we will explain these details to the demo

1688

Panel 1 - Documents Panel: Users
highlight text and labels it “positive
example” or “negative example”.

Users can easily keep track of their highlights.
When ready, they ask Seer to suggest some rules.

Certain extractions require multiple rules: Seer
opens different tabs for different rules.

Panel 4 - Refinements Panel: Seer
allows users to disambiguate their
intent by providing more examples for
users to label as positive or negative.
Seer eliminates examples that could
lead to conflict.

Panel 2 - Rule Suggestions Panel
(active rule set): Seer suggests rules
that are consistent with the examples
the user highlighted as well as their
disambiguation choices.

Panel 3 - Results Panel: As the
user selects a rule, its execution
results are immediately
presented.

Users can export results
or tweak a rule before
execution.

Figure 1: SEER’s Interface

(a) Rules learned from only the positive examples. (b) Rules learned from the positive and negative examples.

Figure 2: Suggested rules.

audience. Examples whose trees intersect are grouped together [4].
Examples whose trees do not intersect result in a disjunction of
different rule suggestion sets.

The examples e1 = ‘offenses dropped 9.8 percent’ and e2 =
‘offenses decreased 3.2 percent’ are grouped together as rules, such
as L: ‘offenses’ T : 0-1 P: Percentage , can capture both of the
examples. Tree intersection will yield a non-empty tree of rules that
captures both examples. The example e3 = ‘0.5 percent increases
in offenses’, results in a new group as its tree cannot be intersected
with the previous rule trees. The top right bar in Figure 1 would hold
multiple tabs: one for each group of examples that can be captured
by one intersected tree of rules.

At then end of this stage, Jane analyzes each rule. Suppose she
selects the first rule, L: ‘offenses’ T : 0-1 P: Percentage . Look-
ing at the results panel, she notices a wrong extraction, ‘offenses.
67.0 percent’. In the next section, we will illustrate how she can
provide negative examples to eliminate such extractions.

2.4 Incorporating Negative Examples
Jane highlights the wrong extraction from the document and labels

it as a negative example. She then clicks on “Suggest me some rules!”
and SEER begins learning with the new set of positive and negative
examples, i.e. ‘offenses dropped 9.8 percent’, ‘offenses decreased
3.2 percent’, ‘offenses declined 8.0 percent’ as positive examples
and ‘offenses. 67.0 percent’ and ‘offenses). In 31.0 percent’ as
negative examples. The new set of examples do not capture the
negative examples (see Figure 2b). The rule L: ‘offenses’ T : 0-1
P: Percentage is now removed from the set of rules. As SEER

generates the search space of possible rules, SEER prunes rules that
capture any one of the negative examples. Thus, it only produces
consistent rules. Details of how pruning works are explained in the
full paper [4] and we will explain such details to the demo audience.

2.5 Filter Generated Rules
Since it is time-consuming to click through each rule to analyze

the differences, Jane filters the suggested rules by accepting and
rejecting extractions. Extractions that can be accepted or rejected are
called refinements (shown in Figure 1 in the refinements panel). For
instance, by rejecting the refinement ‘Burglaries dropped 8.6 per-
cent’, Jane filters out the rules r1 = R: [A-Za-z]+ R: [A-Za-z]+
P: Percentage and r2 = R: [A-Za-z]+
D: {decreased, declined, dropped} P: Percentage .

Specifically, a refinement x is an extraction captured by a subset
of the suggested rules, referred to as covering ruleset. SEER picks
refinements from the union of all the suggested rules’ extractions.
An extraction is a refinement if no other existing refinements have
the exact set of covering rules. For instance, if the extraction e1 =
‘Burglaries declined 3.8 percent’ has the exact same covering rules
as e2 = ‘Burglaries dropped 8.6 percent’ and if e2 is already a
refinement, denoted as x2, then e1 will not be added as a refinement.
Hence, the final refinements have covering rules that are unique
from one another.

As Jane clicks “Yes” or “No” in the refinements panel, the rules
are filtered and some of the selections in the refinements panel that
have not been answered are disabled and grayed out. By disabling
selections, SEER prevents conflicting selections to occur, where

1689

The Collection

Document Panel

Results Panel

Rule Suggestion
 Panel

Refinements Panel

Interface

Synthesizer

User uploads
documents

Extraction Engine:
SystemT

VAQL Rules

Refinement
Generator

Extractions, Rules

SEER learns from
user examples

SEER suggests
VAQL rules

SEER executes
the rules

SEER generates
refinementsUser accepts or

rejects refinements

User analyzes
results

User analyzes,
selects, and edits

rules

User exports and
publishes final rules

User highlights
(more) examples

Figure 3: SEER’s System Architecture

the user rejects a refinement captured by a rule that was accepted
under a different refinement (or vice versa). Since Jane rejected
‘Burglaries dropped 8.6 percent’, the refinement ‘crimes declined
3.8 percent’ will be disabled as it is captured by the same rules as
the rejected refinement.

2.6 Saving and Publishing Rules
After filtering the rules, Jane wishes to use the rules r1 =

L: ‘offenses’ R: [A-Za-z]+ P: Percentage and r2 = L: ‘offenses’
D: {decreased, declined, dropped} P: Percentage for a larger task,

such as extracting the types of crimes associated with each percent-
age change, e.g. ‘offenses decreased 4.5% for property crimes’ or
‘arson offenses dropped 8.0 percent’. She can save and export a
union of the rules, which she can re-import into SEER as pre-builts.
She can also edit the rules before exporting them, e.g. she can add
entries into the dictionary in r2 such as ‘rose’.

2.7 System Architecture
Figure 3 is a system architecture diagram of SEER. It illustrates

SEER’s major components such as the rule synthesizer and refine-
ments generator as well as the interactions between different compo-
nents and the user. SEER is a web application with a Java backend
that executes VAQL [9] rules with the SystemT extraction engine [6].

2.8 User Studies
We conclude our demonstration by describing details of a user

study we conducted for SEER [4]. In the study, participants were
asked to complete IE tasks in SEER and in VINERy, a free and
online tool for building IE rules in VAQL. While typically users can
edit rules in SEER, the editing features of SEER were disabled in
order to observe the differences in rule suggestions and rule building.
We wanted to compare how fast participants completed the IE tasks
and how accurate and precise the created rules were.

We measured the time to complete data extraction tasks of vary-
ing difficulty and we measured precision =

tp
tp+ fp

(also known

as accuracy), recall = tp
tp+ fn

(also known as coverage), and F1 =

2 · precision·recall
precision+recall , where tp denotes the number of true positives, fp

denotes the number of false positives and fn denotes the number of
false negatives. Participants using SEER finished the IE tasks faster
and with more accurate and precise rules (see Figure 4).

Participants also completed a questionnaire about their experi-
ences with SEER and VINERy. The questionnaire asked participants
whether they searched the documents for actual instances of target
extractions and whether they verified the extractions of the rules
(instead of merely glancing at the first few extractions). The two ac-
tivities are required during rule creation to have precise and accurate
rules. Participants in VINERy admitted that they did not actively

Figure 4: Time for task completion per participant [4]. Black bars
indicate mean times. The mean F1, precision, and recall are also
listed.

search for actual instances of target extractions in the dataset and
based their constructed rules on example extractions given to them
in the experiment instructions. While participants reported feeling
that they analyzed and verified more extractions in VINERy than
in SEER, the actual number of extractions analyzed was higher in
SEER. Users in VINERy were overly confident in the rules that they
built and did not properly verify the extractions of their rules. By
not searching actual instances of the extractions and not properly
verifying their rules, participants built rules with lower recall and
lower precision scores in VINERy. The evaluation details are in [4].

3. REFERENCES
[1] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and

O. Etzioni. Open information extraction from the web.
IJCAI’07, pages 2670–2676, 2007.

[2] L. Chiticariu, Y. Li, and F. R. Reiss. Rule-based information
extraction is dead! long live rule-based information extraction
systems! EMNLP 2013, pages 827–832, 2013.

[3] E. Ferrara, P. D. Meo, G. Fiumara, and R. Baumgartner. Web
data extraction, applications and techniques: A survey.
Knowledge-Based Systems, 70:301 – 323, 2014.

[4] M. F. Hanafi, A. Abouzied, L. Chiticariu, and Y. Li. Seer:
Auto-generating information extraction rules from
user-specified examples. CHI, 2017. Accepted.

[5] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
Interactive visual specification of data transformation scripts.
CHI ’11, pages 3363–3372, 2011.

[6] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss,
S. Vaithyanathan, and H. Zhu. Systemt: A system for
declarative information extraction. SIGMOD Rec., 37(4):7–13,
Mar. 2009.

[7] N. Kushmerick. Wrapper induction for information extraction.
PhD thesis, University of Washington, 1997.

[8] V. Le and S. Gulwani. Flashextract: A framework for data
extraction by examples. PLDI ’14, pages 542–553, 2014.

[9] Y. Li, E. Kim, M. A. Touchette, R. Venkatachalam, and
H. Wang. Vinery: A visual ide for information extraction.
Proc. VLDB Endow., 8(12):1948–1951, Aug. 2015.

[10] B. Liu, L. Chiticariu, V. Chu, H. V. Jagadish, and F. R. Reiss.
Automatic rule refinement for information extraction. Proc.
VLDB Endow., 3(1-2):588–597, Sept. 2010.

[11] I. Muslea, S. Minton, and C. A. Knoblock. Hierarchical
wrapper induction for semistructured information sources.
AAMAS, 4(1-2):93–114, 2001.

[12] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan.
Declarative information extraction using datalog with
embedded extraction predicates. VLDB ’07, pages
1033–1044, 2007.

1690

	Introduction
	Demonstration Overview
	Scenario
	SEER rules
	Rule Generation from Positive Examples
	Incorporating Negative Examples
	Filter Generated Rules
	Saving and Publishing Rules
	System Architecture
	User Studies

	References

